Chinaunix首页 | 论坛 | 博客
  • 博客访问: 33752
  • 博文数量: 20
  • 博客积分: 1410
  • 博客等级: 上尉
  • 技术积分: 175
  • 用 户 组: 普通用户
  • 注册时间: 2010-01-28 14:38
文章分类

全部博文(20)

文章存档

2010年(20)

我的朋友
最近访客

分类: LINUX

2010-01-28 19:56:05

Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Linux2.6 内核的 initrd 处理部分代码的分析,使读者可以对 initrd 技术有一个全面的认识。为了更好的阅读本文,要求读者对 Linux 的 VFS 以及 initrd 有一个初步的了解。

为了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的 initrd进行一个简单的介绍。Linux2.4内核的initrd的格式是文件系统镜像文件,本文将其称为image-initrd,以区别后面介绍 的linux2.6内核的cpio格式的initrd。 linux2.4内核对initrd的处理流程如下:

1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。

2. 在内核初始化过程中,内核把 /dev/initrd 设备的内容解压缩并拷贝到 /dev/ram0 设备上。

3. 内核以可读写的方式把 /dev/ram0 设备挂载为原始的根文件系统。

4. 如果 /dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

7. 如果真正的根文件系统存在 /initrd 目录,那么 /dev/ram0 将从 / 移动到 /initrd。否则如果 /initrd 目录不存在, /dev/ram0 将被卸载。

linux2.6 内核支持两种格式的 initrd,一种是前面第 3 部分介绍的 linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同 Linux2.4 内核的 initrd 一样,其核心文件就是 /linuxrc。另外一种格式的 initrd 是 cpio 格式的,这种格式的 initrd 从 linux2.5 起开始引入,使用 cpio 工具生成,其核心文件不再是 /linuxrc,而是 /init,本文将这种 initrd 称为 cpio-initrd。尽管 linux2.6 内核对 cpio-initrd和 image-initrd 这两种格式的 initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍 linux2.6 内核对这两种 initrd 的处理流程。

image-initrd的处理流程

2. 内核判断initrd的文件格式,如果不是cpio格式,将其作为image-initrd处理。

3. 内核将initrd的内容保存在rootfs下的/initrd.image文件中。

4. 内核将/initrd.image的内容读入/dev/ram0设备中,也就是读入了一个内存盘中。

5. 接着内核以可读写的方式把/dev/ram0设备挂载为原始的根文件系统。

6. .如果/dev/ram0被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

9. 如果常规根文件系统存在/initrd目录,那么/dev/ram0将从/移动到/initrd。否则如果/initrd目录不存在, /dev/ram0将被卸载。

通过上面的流程介绍可知,Linux2.6内核对image-initrd的处理流程同linux2.4内核相比并没有显著的变化, cpio-initrd的处理流程相比于image-initrd的处理流程却有很大的区别,流程非常简单,在后面的源代码分析中,读者更能体会到处理的 简捷。

4cpio-initrdimage-initrd的区别与优势

没有找到正式的关于cpio-initrd同image-initrd对比的文献,根据笔者的使用体验以及内核代码的分析,总结出如下三方面的区别,这些区别也正是cpio-initrd的优势所在:

#假设当前目录位于准备好的initrd文件系统的根目录下
bash# find . | cpio -c -o > ../initrd.img
bash# gzip ../initrd.img

#假设当前目录位于准备好的initrd文件系统的根目录下
bash# dd if=/dev/zero of=../initrd.img bs=512k count=5
bash# mkfs.ext2 -F -m0 ../initrd.img
bash# mount -t ext2 -o loop ../initrd.img /mnt
bash# cp -r * /mnt
bash# umount /mnt
bash# gzip -9 ../initrd.img

2. cpio-initrd启动完/init进程,内核的任务就结束了,剩下的工作完全交给/init处理;而对于image-initrd,内核在执行完 /linuxrc进程后,还要进行一些收尾工作,并且要负责执行真正的根文件系统的/sbin/init。通过图1可以更加清晰的看出处理流程的区别:

1内核对cpio-initrdimage-initrd处理流程示意图

如 图1所示,cpio-initrd不再象image-initrd那样作为linux内核启动的一个中间步骤,而是作为内核启动的终点,内核将控制权交给 cpio-initrd的/init文件后,内核的任务就结束了,所以在/init文件中,我们可以做更多的工作,而不比担心同内核后续处理的衔接问题。 当然目前linux发行版的cpio-initrd的/init文件的内容还没有本质的改变,但是相信initrd职责的增加一定是一个趋势。

image-initrd: 前面已经定义过,专指传统的文件镜像格式的initrd。

static int init(void * unused){
[1] populate_rootfs();

[2] if (sys_access((const char __user *) "/init", 0) == 0)
execute_command = "/init";
else
prepare_namespace();
[3] if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
printk(KERN_WARNING "Warning: unable to open an initial console.\n");
(void) sys_dup(0);
(void) sys_dup(0);
[4] if (execute_command)
run_init_process(execute_command);
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");
panic("No init found. Try passing init= option to kernel.");
}

代码[2]:如果rootfs的根目录下中包含/init进程,则赋予execute_command,在init函数的末尾会被执行。否则执行prepare_namespace函数,initrd是在该函数中被加载的。

………..
switchroot --movedev /sysroot

void __init populate_rootfs(void){
[1] char *err = unpack_to_rootfs(__initramfs_start,
__initramfs_end - __initramfs_start, 0);
[2] if (initrd_start) {
[3] err = unpack_to_rootfs((char *)initrd_start,
initrd_end - initrd_start, 1);

[4] if (!err) {
printk(" it is\n");
unpack_to_rootfs((char *)initrd_start,
initrd_end - initrd_start, 0);
free_initrd_mem(initrd_start, initrd_end);
return;
}
[5] fd = sys_open("/initrd.image", O_WRONLY|O_CREAT, 700);
if (fd >= 0) {
sys_write(fd, (char *)initrd_start,
initrd_end - initrd_start);
sys_close(fd);
free_initrd_mem(initrd_start, initrd_end);
}
}

代码[5]:如果不是cpio-initrd,则认为是一个image-initrd,将其内容保存到/initrd.image中。在后面的image-initrd的处理代码中会读取/initrd.image。

对image-initrd的处理 在prepare_namespace函数里,包含了对image-initrd进行处理的代码,相关代码如下:

void __init prepare_namespace(void){
[1] if (initrd_load())
goto out;
out:
umount_devfs("/dev");
[2] sys_mount(".", "/", NULL, MS_MOVE, NULL);
sys_chroot(".");
security_sb_post_mountroot();
mount_devfs_fs ();
}

initrd_load函数负责载入image-initrd,代码如下:

int __init initrd_load(void)
{
[1] if (mount_initrd) {
create_dev("/dev/ram", Root_RAM0, NULL);
[2] if (rd_load_image("/initrd.image") && ROOT_DEV != Root_RAM0) {
sys_unlink("/initrd.image");
handle_initrd();
return 1;
}
}
sys_unlink("/initrd.image");
return 0;
}

代码[1]:如果加载initrd则建立一个ram0设备 /dev/ram。

代码[2]:/initrd.image文件保存的就是image-initrd,rd_load_image函数执行具体的加载操作,将 image-nitrd的文件内容释放到ram0里。判断ROOT_DEV!=Root_RAM0的含义是,如果你在grub或者lilo里配置了 root=/dev/ram0 ,则实际上真正的根设备就是initrd了,所以就不把它作为initrd处理 ,而是作为realfs处理。

static void __init handle_initrd(void){
[1] real_root_dev = new_encode_dev(ROOT_DEV);
[2] create_dev("/dev/root.old", Root_RAM0, NULL);
mount_block_root("/dev/root.old", root_mountflags & ~MS_RDONLY);
[3] sys_mkdir("/old", 0700);
root_fd = sys_open("/", 0, 0);
old_fd = sys_open("/old", 0, 0);
/* move initrd over / and chdir/chroot in initrd root */
[4] sys_chdir("/root");
sys_mount(".", "/", NULL, MS_MOVE, NULL);
sys_chroot(".");
mount_devfs_fs ();
[5] pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);
if (pid > 0) {
while (pid != sys_wait4(-1, &i, 0, NULL))
yield();
}
/* move initrd to rootfs' /old */
sys_fchdir(old_fd);
sys_mount("/", ".", NULL, MS_MOVE, NULL);
/* switch root and cwd back to / of rootfs */
[6] sys_fchdir(root_fd);
sys_chroot(".");
sys_close(old_fd);
sys_close(root_fd);
umount_devfs("/old/dev");
[7] if (new_decode_dev(real_root_dev) == Root_RAM0) {
sys_chdir("/old");
return;
}
[8] ROOT_DEV = new_decode_dev(real_root_dev);
mount_root();
[9] printk(KERN_NOTICE "Trying to move old root to /initrd ... ");
error = sys_mount("/old", "/root/initrd", NULL, MS_MOVE, NULL);
if (!error)
printk("okay\n");
else {
int fd = sys_open("/dev/root.old", O_RDWR, 0);
printk("failed\n");
printk(KERN_NOTICE "Unmounting old root\n");
sys_umount("/old", MNT_DETACH);
printk(KERN_NOTICE "Trying to free ramdisk memory ... ");
if (fd < 0) {
error = fd;
} else {
error = sys_ioctl(fd, BLKFLSBUF, 0);
sys_close(fd);
}
printk(!error ? "okay\n" : "failed\n");
}


 

代码[1]:real_root_dev,是一个全局变量保存的是realfs的设备号。

代码[7]:如果real_root_dev在 linuxrc中重新设成Root_RAM0,则initrd就是最终的realfs了,改变当前目录到initrd中,不作后续处理直接返回。

 

1. 尽管Linux2.6既支持cpio-initrd,也支持image-initrd,但是cpio-initrd有着更大的优势,在使用中我们应该优先考虑使用cpio格式的initrd。

2. cpio-initrd相对于image-initrd承担了更多的初始化责任,这种变化也可以看作是内核代码的用户层化的一种体现,我们在其它的诸如 FUSE等项目中也看到了将内核功能扩展到用户层实现的尝试。精简内核代码,将部分功能移植到用户层必然是linux内核发展的一个趋势。

[2]

[3]

从下面这篇文章中读者可以了解到关于linux VSF、rootfs的相关知识:

[4] http://www-128.ibm.com/developerworks/cn/linux/l-vfs/

下面是一些initrd的参考资料:

[5]

[6]

阅读(413) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~