Chinaunix首页 | 论坛 | 博客
  • 博客访问: 185144
  • 博文数量: 31
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 1124
  • 用 户 组: 普通用户
  • 注册时间: 2013-09-27 10:55
文章存档

2013年(31)

我的朋友

分类: 虚拟化

2013-11-21 14:01:19

memory子系统

memory 子系统可以设定 cgroup 中任务使用的内存限制,并自动生成由那些任务使用的内存资源报告。memory子系统是通过linuxresource counter机制实现的。下面我们就先来看一下resource counter机制。

resource counter是内核为子系统提供的一种资源管理机制。这个机制的实现包括了用于记录资源的数据结构和相关函数。Resource counter定义了一个res_counter的结构体来管理特定资源,定义如下:

struct res_counter {

unsigned long long usage;

unsigned long long max_usage;

unsigned long long limit;

unsigned long long soft_limit;

unsigned long long failcnt; /*

spinlock_t lock;

struct res_counter *parent;

};

 

Usage用于记录当前已使用的资源,max_usage用于记录使用过的最大资源量,limit用于设置资源的使用上限,进程组不能使用超过这个限制的资源,soft_limit用于设定一个软上限,进程组使用的资源可以超过这个限制,failcnt用于记录资源分配失败的次数,管理可以根据这个记录,调整上限值。Parent指向父节点,这个变量用于处理层次性的资源管理。

除了这个关键的数据结构,resource counter还定义了一系列相关的函数。下面我们来看几个关键的函数。

void res_counter_init(struct res_counter *counter, struct res_counter *parent)

{

spin_lock_init(&counter->lock);

counter->limit = RESOURCE_MAX;

counter->soft_limit = RESOURCE_MAX;

counter->parent = parent;

}

这个函数用于初始化一个res_counter。

第二个关键的函数是int res_counter_charge(struct res_counter *counter, unsigned long val, struct res_counter **limit_fail_at)。当资源将要被分配的时候,资源就要被记录到相应的res_counter里。这个函数作用就是记录进程组使用的资源。在这个函数中有:

for (c = counter; c != NULL; c = c->parent) {

spin_lock(&c->lock);

ret = res_counter_charge_locked(c, val);

spin_unlock(&c->lock);

if (ret < 0) {

*limit_fail_at = c;

goto undo;

}

}

在这个循环里,从当前res_counter开始,从下往上逐层增加资源的使用量。我们来看一下res_counter_charge_locked这个函数,这个函数顾名思义就是在加锁的情况下增加使用量。实现如下:

{

if (counter->usage + val > counter->limit) {

counter->failcnt++;

return -ENOMEM;

}

 

counter->usage += val;

if (counter->usage > counter->max_usage)

counter->max_usage = counter->usage;

return 0;

}

首先判断是否已经超过使用上限,如果是的话就增加失败次数,返回相关代码;否则就增加使用量的值,如果这个值已经超过历史最大值,则更新最大值。

第三个关键的函数是void res_counter_uncharge(struct res_counter *counter, unsigned long val)。当资源被归还到系统的时候,要在相应的res_counter减轻相应的使用量。这个函数作用就在于在于此。实现如下:

for (c = counter; c != NULL; c = c->parent) {

spin_lock(&c->lock);

res_counter_uncharge_locked(c, val);

spin_unlock(&c->lock);

}

从当前counter开始,从下往上逐层减少使用量,其中调用了res_counter_uncharge_locked,这个函数的作用就是在加锁的情况下减少相应的counter的使用量。

有这些数据结构和函数,只需要在内核分配资源的时候,植入相应的charge函数,释放资源时,植入相应的uncharge函数,就能实现对资源的控制了。

介绍完resource counter,我们再来看memory子系统是利用resource counter实现对内存资源的管理的。

memory子系统定义了一个叫mem_cgroup的结构体来管理cgroup相关的内存使用信息,定义如下:

struct mem_cgroup {

struct cgroup_subsys_state css;

struct res_counter res;

struct res_counter memsw;

struct mem_cgroup_lru_info info;

spinlock_t reclaim_param_lock;

int prev_priority;

int last_scanned_child;

bool use_hierarchy;

atomic_t oom_lock;

atomic_t refcnt;

unsigned int swappiness;

int oom_kill_disable;

bool memsw_is_minimum;

struct mutex thresholds_lock;

struct mem_cgroup_thresholds thresholds;

struct mem_cgroup_thresholds memsw_thresholds;

struct list_head oom_notify;

unsigned long  move_charge_at_immigrate;

struct mem_cgroup_stat_cpu *stat;

};

跟其他子系统一样,mem_cgroup也包含了一个cgroup_subsys_state成员,便于taskcgroup获取mem_cgroup

mem_cgroup中包含了两个res_counter成员,分别用于管理memory资源和memory+swap资源,如果memsw_is_minimumtrue,则res.limit=memsw.limit,即当进程组使用的内存超过memory的限制时,不能通过swap来缓解。

use_hierarchy则用来标记资源控制和记录时是否是层次性的。

oom_kill_disable则表示是否使用oom-killer

oom_notify指向一个oom notifier event fd链表。

另外memory子系统还定义了一个叫page_cgroup的结构体:

struct page_cgroup {

unsigned long flags;

struct mem_cgroup *mem_cgroup;

struct page *page;

struct list_head lru; /* per cgroup LRU list */

};

此结构体可以看作是mem_map的一个扩展,每个page_cgroup都和所有的page关联,而其中的mem_cgroup成员,则将page与特定的mem_cgroup关联起来。

我们知道在linux系统中,page结构体是用来管理物理页框的,一个物理页框对应一个page结构体,而每个进程中的task_struct中都有一个mm_struct来管理进程的内存信息。每个mm_struct知道它属于的进程,进而知道所属的mem_cgroup,而每个page都知道它属于的page_cgroup,进而也知道所属的mem_cgroup,而内存使用量的计算是按cgroup为单位的,这样以来,内存资源的管理就可以实现了。

memory子系统既然是通过resource counter实现的,那肯定会在内存分配给进程时进行charge操作的。下面我们就来看一下这些charge操作:

1.page fault发生时,有两种情况内核需要给进程分配新的页框。一种是进程请求调页(demand paging),另一种是copy on write。内核在handle_pte_fault中进行处理。其中,do_linear_fault处理pte不存在且页面线性映射了文件的情况,do_anonymous_page处理pte不存在且页面没有映射文件的情况,do_nonlinear_fault处理pte存在且页面非线性映射文件的情况,do_wp_page则处理copy on write的情况。其中do_linear_faultdo_nonlinear_fault都会调用__do_fault来处理。Memory子系统则__do_faultdo_anonymous_pagedo_wp_page植入mem_cgroup_newpage_charge来进行charge操作。

2.内核在handle_pte_fault中进行处理时,还有一种情况是pte存在且页又没有映射文件。这种情况说明页面之前在内存中,但是后面被换出到swap空间了。内核用do_swap_page函数处理这种情况,memory子系统在do_swap_page加入了mem_cgroup_try_charge_swapin函数进行chargemem_cgroup_try_charge_swapin是处理页面换入时的charge的,当执行swapoff系统调用(关掉swap空间),内核也会执行页面换入操作,因此mem_cgroup_try_charge_swapin也被植入到了相应的函数中。

3.当内核将page加入到page cache中时,也需要进行charge操作,mem_cgroup_cache_charge函数正是处理这种情况,它被植入到系统处理page cacheadd_to_page_cache_locked函数中。

4.最后mem_cgroup_prepare_migration是用于处理内存迁移中的charge操作。

除了charge操作,memory子系统还需要处理相应的uncharge操作。下面我们来看一下uncharge操作:

1.mem_cgroup_uncharge_page用于当匿名页完全unmaped的时候。但是如果该pageswap cache的话,uncharge操作延迟到mem_cgroup_uncharge_swapcache被调用时执行。

2.mem_cgroup_uncharge_cache_page用于page cacheradix-tree删除的时候。但是如果该pageswap cache的话,uncharge操作延迟到mem_cgroup_uncharge_swapcache被调用时执行。

3.mem_cgroup_uncharge_swapcache用于swap cache从radix-tree删除的时候。Charge的资源会被算到swap_cgroup,如果mem+swap controller被禁用了,就不需要这样做了。

4.mem_cgroup_uncharge_swap用于swap_entry的引用数减到0的时候。这个函数主要在mem+swap controller可用的情况下使用的。

5.mem_cgroup_end_migration用于内存迁移结束时相关的uncharge操作。

Charge函数最终都是通过调用__mem_cgroup_try_charge来实现的。在__mem_cgroup_try_charge函数中,调用res_counter_charge(&mem->res, csize, &fail_res)对memory进行charge,调用res_counter_charge(&mem->memsw, csize, &fail_res)memory+swap进行charge

Uncharge函数最终都是通过调用__do_uncharge来实现的。在__do_uncharge中,分别调用res_counter_uncharge(&mem->res,PAGE_SIZE)和res_counter_uncharge(&mem->memsw, PAGE_SIZE)uncharge memorymemory+swap

跟其他子系统一样,memory子系统也实现了一个cgroup_subsys。

struct cgroup_subsys mem_cgroup_subsys = {

.name = "memory",

.subsys_id = mem_cgroup_subsys_id,

.create = mem_cgroup_create,

.pre_destroy = mem_cgroup_pre_destroy,

.destroy = mem_cgroup_destroy,

.populate = mem_cgroup_populate,

.can_attach = mem_cgroup_can_attach,

.cancel_attach = mem_cgroup_cancel_attach,

.attach = mem_cgroup_move_task,

.early_init = 0,

.use_id = 1,

};

Memory子系统中重要的文件有

memsw.limit_in_bytes

{

.name = "memsw.limit_in_bytes",

.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),

.write_string = mem_cgroup_write,

.read_u64 = mem_cgroup_read,

},

这个文件用于设定memory+swap上限值。

Limit_in_bytes

{

.name = "limit_in_bytes",

.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),

.write_string = mem_cgroup_write,

.read_u64 = mem_cgroup_read,

},

这个文件用于设定memory上限值。

 

作者曰:memory子系统的实现相当复杂,这篇文章只是简单分析了一下实现框架,没有去分析具体细节。要完全懂memory子系统,首先就要懂linux的memory管理,这个就不容易了,作者本人也只是略知一二,故不能更深入地去分析memory子系统的细节了。

阅读(2018) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~