Chinaunix首页 | 论坛 | 博客
  • 博客访问: 777178
  • 博文数量: 196
  • 博客积分: 115
  • 博客等级: 民兵
  • 技术积分: 354
  • 用 户 组: 普通用户
  • 注册时间: 2010-05-13 23:19
文章分类

全部博文(196)

文章存档

2021年(1)

2019年(5)

2018年(11)

2017年(15)

2016年(13)

2015年(46)

2014年(81)

2013年(22)

2012年(2)

分类: LINUX

2014-05-23 09:21:11

epoll - I/O event notification facility

epoll是为处理大批量而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量中只有少量活跃的情况下的系统CPU利用率。epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。

特点:
1:支持一个进程打开大数目的socket描述符
select 最不能忍受的是一个进程所打开的FD是有一定限制的,由FD_SETSIZE设置,默认值是1024。epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max查看,一般来说这个数目和系统内存关系很大。
2:IO效率不随FD数目增加而线性下降
传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,不过由于网络延时,任一时间只有部分的socket是“活跃”的,但是select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。但是epoll不存在这个问题,它只会对“活跃”的socket进行操作
3:使用mmap加速内核与用户空间的消息传递
epoll是通过内核与用户空间mmap同一块内存实现的。而如果你像我一样从2.5内核就关注epoll的话,一定不会忘记手工 mmap这一步的。
4:内核微调
如listen函数的第2个参数(TCP完成3次握手的数据包队列长度),也可以根据你平台内存大小动态调整。

2.6内核的epoll比其2.5开发版本的/dev/epoll简洁了许多,所以,大部分情况下,强大的东西往往是简单的。唯一有点麻烦是epoll有2种工作方式:LT和ET。
2.6内核的epoll比其2.5开发版本的/dev/epoll简洁了许多,所以,大部分情况下,强大的东西往往是简单的。唯一有点麻烦是epoll有2种工作方式:LT和ET。
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。
ET (edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认。
ET和LT的区别就在这里体现,LT事件不会丢弃,而是只要读buffer里面有数据可以让用户读,则不断的通知你。而ET则只在事件发生之时通知。可以简单理解为LT是水平触发,而ET则为边缘触发。LT模式只要有事件未处理就会触发,而ET则只在高低电平变换时(即状态从1到0或者0到1)触发。
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE    1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。 
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:

typedef union epoll_data {
    void *ptr;
    int fd;
    __uint32_t u32;
    __uint64_t u64;
} epoll_data_t;

struct epoll_event {
    __uint32_t events; /* Epoll events */
    epoll_data_t data; /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。


4、关于ET、LT两种工作模式:
可以得出这样的结论:
ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的.


那么究竟如何来使用epoll呢?其实非常简单。
通过在包含一个头文件#include 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。

首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。

之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。

epoll_wait范围之后应该是一个循环,遍利所有的事件。

几乎所有的epoll程序都使用下面的框架:

    for( ; ; )
    {
        nfds = epoll_wait(epfd,events,20,500);
        for(i=0;i         {
            if(events[i].data.fd==listenfd) //有新的连接
            {
                connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
                ev.data.fd=connfd;
                ev.events=EPOLLIN|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中
            }
            else if( events[i].events&EPOLLIN ) //接收到数据,读socket
            {
                n = read(sockfd, line, MAXLINE)) < 0    //读
                ev.data.ptr = md;     //md为自定义类型,添加数据
                ev.events=EPOLLOUT|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓
            }
            else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
            {
                struct myepoll_data* md = (myepoll_data*)events[i].data.ptr;    //取数据
                sockfd = md->fd;
                send( sockfd, md->ptr, strlen((char*)md->ptr), 0 );        //发送数据
                ev.data.fd=sockfd;
                ev.events=EPOLLIN|EPOLLET;
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据
            }
            else
            {
                //其他的处理
            }
        }
    }



下面给出一个完整的服务器端例子:


#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

using namespace std;

#define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000

void setnonblocking(int sock)
{
    int opts;
    opts=fcntl(sock,F_GETFL);
    if(opts<0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts|O_NONBLOCK;
    if(fcntl(sock,F_SETFL,opts)<0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }
}

int main(int argc, char* argv[])
{
    int i, maxi, listenfd, connfd, sockfd,epfd,nfds, portnumber;
    ssize_t n;
    char line[MAXLINE];
    socklen_t clilen;


    if ( 2 == argc )
    {
        if( (portnumber = atoi(argv[1])) < 0 )
        {
            fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
            return 1;
        }
    }
    else
    {
        fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
        return 1;
    }



    //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件

    struct epoll_event ev,events[20];
    //生成用于处理accept的epoll专用的文件描述符

    epfd=epoll_create(256);
    struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    //把socket设置为非阻塞方式

    //setnonblocking(listenfd);

    //设置与要处理的事件相关的文件描述符

    ev.data.fd=listenfd;
    //设置要处理的事件类型

    ev.events=EPOLLIN|EPOLLET;
    //ev.events=EPOLLIN;

    //注册epoll事件

    epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
    bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    char *local_addr="127.0.0.1";
    inet_aton(local_addr,&(serveraddr.sin_addr));//htons(portnumber);

    serveraddr.sin_port=htons(portnumber);
    bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
    listen(listenfd, LISTENQ);
    maxi = 0;
    for ( ; ; ) {
        //等待epoll事件的发生

        nfds=epoll_wait(epfd,events,20,500);
        //处理所发生的所有事件

        for(i=0;i<nfds;++i)
        {
            if(events[i].data.fd==listenfd)//如果新监测到一个SOCKET用户连接到了绑定的SOCKET端口,建立新的连接。

            {
                connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
                if(connfd<0){
                    perror("connfd<0");
                    exit(1);
                }
                //setnonblocking(connfd);

                char *str = inet_ntoa(clientaddr.sin_addr);
                cout << "accapt a connection from " << str << endl;
                //设置用于读操作的文件描述符

                ev.data.fd=connfd;
                //设置用于注测的读操作事件

                ev.events=EPOLLIN|EPOLLET;
                //ev.events=EPOLLIN;

                //注册ev

                epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
            }
            else if(events[i].events&EPOLLIN)//如果是已经连接的用户,并且收到数据,那么进行读入。

            {
                cout << "EPOLLIN" << endl;
                if ( (sockfd = events[i].data.fd) < 0)
                    continue;
                if ( (n = read(sockfd, line, MAXLINE)) < 0) {
                    if (errno == ECONNRESET) {
                        close(sockfd);
                        events[i].data.fd = -1;
                    } else
                        std::cout<<"readline error"<<std::endl;
                } else if (n == 0) {
                    close(sockfd);
                    events[i].data.fd = -1;
                }
                line[n] = '/0';
                cout << "read " << line << endl;
                //设置用于写操作的文件描述符

                ev.data.fd=sockfd;
                //设置用于注测的写操作事件

                ev.events=EPOLLOUT|EPOLLET;
                //修改sockfd上要处理的事件为EPOLLOUT

                //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);

            }
            else if(events[i].events&EPOLLOUT) // 如果有数据发送

            {
                sockfd = events[i].data.fd;
                write(sockfd, line, n);
                //设置用于读操作的文件描述符

                ev.data.fd=sockfd;
                //设置用于注测的读操作事件

                ev.events=EPOLLIN|EPOLLET;
                //修改sockfd上要处理的事件为EPOLIN

                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
            }
        }
    }
    return 0;
}


客户端直接连接到这个服务器就好了。。

阅读(438) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~