ARM处理器共有37个寄存器。其中包括:31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。以及6个32位状态寄存器。但目前只使用了其中12位。ARM处理器共有7种不同的处理器模式,在每一种处理器模式中有一组相应的寄存器组。任意时刻(也就是任意的处理器模式下),可见的寄存器包括15个通用寄存器(R0~R14)、一个或两个状态寄存器及程序计数器(PC)。在所有的寄存器中,有些是各模式共用的同一个物理寄存器;有一些寄存器是各模式自己拥有的独立的物理寄存器。表1列出了各处理器模式下可见的寄存器情况。
表1 各种处理器模式下的寄存器
用户模式 | 系统模式 | 特权模式 | 中止模式 | 未定义指令模式 | 外部中断模式 | 快速中断模式 |
R0 | R0 | R0 | R0 | R0 | R0 | R0 |
R1 | R1 | R1 | R1 | R1 | R1 | R1 |
R2 | R2 | R2 | R2 | R2 | R2 | R2 |
R3 | R3 | R3 | R3 | R3 | R3 | R3 |
R4 | R4 | R4 | R4 | R4 | R4 | R4 |
R5 | R5 | R5 | R5 | R5 | R5 | R5 |
R6 | R6 | R6 | R6 | R6 | R6 | R6 |
R8 | R8 | R8 | R8 | R8 | R8 | R8_fiq |
R9 | R9 | R9 | R9 | R9 | R9 | R9_fiq |
R10 | R10 | R10 | R10 | R10 | R10 | R10_fiq |
R11 | R11 | R11 | R11 | R11 | R11 | R11_fiq |
R12 | R12 | R12 | R12 | R12 | R12 | R12_fiq |
R13 | R13 | R13_svc | R13_abt | R13_und | R13_inq | R13_fiq |
R14 | R14 | R14_svc | R14_abt | R14_und | R14_inq | R14_fiq |
PC | PC | PC | PC | PC | PC | PC |
CPSR | CPSR | CPSR SPSR_svc | CPSR SPSR_abt | CPSR SPSR_und | CPSR SPSR_inq | CPSR SPSR_fiq |
通用寄存器可以分为下面3类:未备份寄存器(The unbanked registers),包括R0~R7。备份寄存器(The banked registers),包括R8~R14。程序计数器PC,即R15。
未备份寄存器包括R0~R7。对于每一个未备份寄存器来说,在所有的处理器模式下指的都是同一个物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用相同的物理寄存器,可能造成寄存器中数据被破坏。未备份寄存器没有被系统用于特别的用途,任何可采用通用寄存器的应用场合都可以使用未备份寄存器。
对于备份寄存器R8~R12来说,每个寄存器对应两个不同的物理寄存器。例如,当使用快速中断模式下的寄存器时,寄存器R8和寄存器R9分别记作R8_fiq、R9_fiq;当使用用户模式下的寄存器时,寄存器R8和寄存器R9分别记作R8_usr、R9_usr等。在这两种情况下使用的是不同的物理寄存器。系统没有将这几个寄存器用于任何的特殊用途,但是当中断处理非常简单,仅仅使用R8~R14寄存器时,FIQ处理程序可以不必执行保存和恢复中断现场的指令,从而可以使中断处理过程非常迅速。对于备份寄存器R13和R14来说,每个寄存器对应6个不同的物理寄存器,其中的一个是用户模式和系统模式共用的;另外的5个对应于其他5种处理器模式。采用记号R13_来区分各个物理寄存器:
其中,可以是下面几种模式之一:usr、svc、abt、und、irq及fiq。
寄存器R13在ARM中常用作栈指针。在ARM指令集中,这只是一种习惯的用法,并没有任何指令强制性的使用R13作为栈指针,用户也可以使用其他的寄存器作为栈指
针;而在Thumb指令集中,有一些指令强制性地使用R13作为栈指针。
每一种异常模式拥有自己的物理的R13。应用程序初始化该R13,使其指向该异常模式专用的栈地址。当进入异常模式时,可以将需要使用的寄存器保存在R13所指的栈中;当退出异常处理程序时,将保存在R13所指的栈中的寄存器值弹出。这样就使异常处理程序不会破坏被其中断程序的运行现场。
寄存器R14又被称为连接寄存器(Link Register,LR),在ARM体系中具有下面两种特殊的作用:每一种处理器模式自己的物理R14中存放在当前子程序的返回地址。当通过BL或BLX指令调用子程序时,R14被设置成该子程序的返回地址。在子程序中,当把R14的值复制到程序计数器PC中时,子程序即返回。
当异常中断发生时,该异常模式特定的物理R14被设置成该异常模式将要返回的地址,对于有些异常模式,R14的值可能与将返回的地址有一个常数的偏移量。具体的返回方式与上面的子程序返回方式基本相同。
R14寄存器也可以作为通用寄存器使用。
程序计数器R15又被记作PC。它虽然可以作为一般的通用寄存器使用,但是有一些指令在使用R15时有一些特殊限制。当违反了这些限制时,该指令执行的结果将是不可预料的。
由于ARM采用了流水线机制,当正确读取了PC的值时,该值为当前指令地址值加8个字节。也就是说,对于ARM指令集来说,PC指向当前指令的下两条指令的地址。
由于ARM指令是字对齐的,PC值的第0位和第1位总为0。需要注意的是,当使用指令STR/STM保存R15时,保存的可能是当前指令地址值加8字节,也可能保存的是当前指令地址加12字节。到底是哪种方式,取决于芯片具体设计方式。无论如何,在同一芯片中,要么采用当前指令地址加8,要么采用当前指令地址加12,不能有些指令采用当前指令地址加8,另一些指令采用当前指令地址加12。因此对于用户来说,尽量避免使用STR/STM指令来保存R15的值。当不可避免这种使用方式时,可以先通过一些代码来确定所用的芯片使用的是哪种实现方式。
对于ARM版本4以及更高的版本,程序必须保证写入R15寄存器的地址值的bits[1:0]为0b00;否则将会产生不可预知的结果。
对于Thumb指令集来说,指令是半字对齐的。处理器将忽略bit[0],即写入R15的地址值首先与0XFFFFFFFC做与操作,再写入R15中。
还有—些指令对于R15的用法有一些特殊的要求。比如,指令BX利用bit[0]来确定是ARM指令,还是Thumb指令。这种读取PC值和写入PC值的不对称的操作需要特别注意。
CPSR(当前程序状态寄存器)可以在任何处理器模式下被访问。它包含了条件标志位、中断禁止位、当前处理器模式标志以及其他的一些控制和状态位。每一种处理器模式下都有一个专用的物理状态寄存器,称为SPSR(备份程序状态寄存器)。当特定的异常中断发生时,这个寄存器用于存放当前程序状态寄存器的内容。在异常中断程序退出时,可以用SPSR中保存的值来恢复CPSR。
由于用户模式和系统模式不是异常中断模式,所以它们没有SPSR。当在用户模式或系统模式中访问SPSR,将会产生不可预知的结果。
CPSR的格式如下所示。SPSR格式与CPSR格式相同。
31 | 30 | 29 | 28 | 27 | 26 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
N | Z | C | V | Q | DNM(RAZ) | I | F | T | M4 | M3 | M2 | M1 | M0 |
N(Negative)、Z(Zero)、C(Carry)及V(oVerflow)统称为条件标志位。大部分的ARM指令可以根据CPSR中的这些条件标志位来选择性地执行。各条件标志位的具体含义如表2所示。
表2 CPSR中的条件标志位
标志位 | 含 义 |
N | 本位设置成当前指令运算结果的bit[31)的值 当两个补码表示的有符号整数运算时,N=I表示运算的结果为负数;N=0表示结果为正数或零 |
Z | Z=1表示运算的结果为零;Z=0表示运算的结果不为零。 对于CMP指令,Z=1表示进行比较的两个数大小相等。 下面分4种情况讨论C的设置方法: 在加法指令中(包括比较指令CMN),当结果产生了进位,则C=1,表示无符号数运算发生上溢出;其他情况下C=0。 在减法指令中(包括比较指令CMP),当运算中发生借位则C=0表示无符号数运算发生下溢出;其他情况下C=1。 对于包含移位操作的非加/减法运算指令,C中包含最后一次溢出的位数数值。 对于其他非加/减法运算指令,C位的值通常不受影响。 |
V | 对于加/减法运算指令,当操作数和运算结果为二进制的补码表示的带符号数时V=1表示符号位溢出。 通常其他的指令不影响V位,具体可参考各指令的说明。 |
在ARMv5的E系列处理器中,CPSR的bit[27]称为Q标志位,主要用于指示增强的
DSP指令是否发生了溢出。同样的SPSR中的bit[27]也称为Q标志位,用于在异常中断发生时保存和恢复CPSR中的Q标志位。
在ARM v5以前的版本及ARM v5的非E系列的处理器中,Q标志位没有被定义。CPSR的bit[27]属于DNM(RAZ)。
CPSR的低8位I、F、T及M[4:0]统称为控制位。当异常中断发生时这些位发生变化。在特权级的处理器模式下,软件可以修改这些控制位。
1) 中断禁止位
当I=1时禁止IRQ中断。
当F=1时禁止FIQ中断。
2) T控制位
T控制位用于控制指令执行的状态,即说明本指令是ARM指令,还是Thumb指令。对与不同版本的ARM处理器,T控制位的含义不同。对于ARMv4以及更高版本的T系列的ARM处理器,
T=0表示执行ARM指令。
T=1表示执行Thumb指令。
对于ARMv5以及更高的版本的非T系列的ARM处理器,T控制位含义如下:
T=0表示执行ARM指令。
T=1表示强制下一条执行的指令产生未定义指令中断。
3) M控制位
控制位M[4:0]控制处理器模式,具体含义如表3所示。
表3控制位M[4:0] 的含义
M[4:0] | 处理器模式 | 可访问的寄存器 |
0b10000 | User | PC,R14一R0,CPSR |
0b10001 | FIQ | PC,R14_fiq-R8_flq,R7~R0,CPSR,SPSR_nq |
0b10010 | 1RQ | PC,R14 _irq-R13 _irq,R12一R0,CPSR,SPSR_ irq |
0b10011 | Supervisor | PC,R14_ svc-R13 _svc,R12~R0,CPSR,SPSR_svc |
0b10111 | Abort | PC,R14_abt-R13_abt,R12~R0,CPSR,SPSR_abt |
0b11011 | Undefined | PC,R14_und-R13_und,R12~R0,CPSR,SPSR_ und |
| | |
CPSR中的其他位用于将来ARM版本的扩展。应用软件不要操作这些位,以免与ARM将来版本的扩展冲突。
ARM体系使用单—的平板地址空间。该地址空间的大小为232个8位字节。这些字节单元的地址是一个无符号的32位数值,其取值范围为0到232—1。ARM的地址空间也可以看作是232个32位的字单元。这些字单元的地址可以被4整除,也就是说该地址的低两位为0b00。地址为A的字数据包括地址为A、A+I、A+2、A+34个字节单元的内容。
在ARM版本4及以上的版本中,ARM的地址空间也可以看作是231个16位的半字单元。这些半字单元的地址可以被2整除,也就是说该地址的最低位为0b0。地址为A的半字数据包括地址为A、A+1两个字节单元的内容。
各存储单元的地址作为32位的无符号数,可以进行常规的整数运算。这些运算的结果进行232取模。也就是说,运算结果发生上溢出和下溢出时,地址将会发生卷绕。
在ARM体系中,每个字单元中包含4个字节单元或者两个半字单元:1个半字单元中包含两个字节单元。但是在字单元中,4个字节哪一个是高位字节,哪一个是低位字节则有两种不同的格式:big-endian格式和little-endian格式。在big-endian格式中,对于地址为A的字单元包括字节单元A、A+1、A+2及A+3,其中字节单元由高位到低位字节顺序为A、A+1、A+2、A+3;地址为A的字单元包括半字单元A、A+2,其中半字单元由高位到低位字节顺序为A、A+2:地址为A的半字单元包括字节单元A、A+1,其中字节单元由高位到低位字节顺序为A、A+1。
在little-endian格式中,地址为A的字单元包括字节单元A、A+1、A+2及A+3,其中字节单元由高位到低位字节顺序为A+3、A+2、A+1、A;地址为A的字单元包括半字节单元A、A+2,其中半字单元由高位到低位字节顺序为A+2、A;地址为A的半字单元包括字节单元A、A+1,其中字节单元由高位到低位字节顺序为A+1、A