Chinaunix首页 | 论坛 | 博客
  • 博客访问: 737552
  • 博文数量: 124
  • 博客积分: 3156
  • 博客等级: 中校
  • 技术积分: 1584
  • 用 户 组: 普通用户
  • 注册时间: 2008-08-02 10:29
文章分类

全部博文(124)

文章存档

2012年(3)

2011年(2)

2010年(61)

2009年(34)

2008年(24)

我的朋友

分类: LINUX

2010-08-27 18:35:22

浅析linux下键盘设备工作和注册流程[转]

linux输入子系统 2008-11-03 18:14:49 阅读135 评论0   字号: 

[转]http://blog.chinaunix.net/u1/38994/showart_1130025.html


浅析linux下键盘设备工作和注册流程

【浅析linux下鼠标驱动的实现】
 input_init()=>
=>
class_register(&input_class);注册input类
input_proc_init();创建proc下的目录和文件
register_chrdev(INPUT_MAJOR, "input", &input_fops);注册驱动程序到cdev_map上,以待驱动设备.

drivers\input\keyboard\pxa3xx_keypad.c为我们的keyboard设备,
pxa3xx_keypad_probe=>
request_irq(IRQ_ENHROT, &enhanced_rotary_interrupt,
            IRQF_DISABLED, "Enhanced Rotary", (void *)keypad);注册快捷键中断
request_irq(IRQ_KEYPAD, pxa3xx_keypad_interrupt, IRQF_DISABLED,pdev->name, keypad);注册中断
static irqreturn_t pxa3xx_keypad_interrupt(int irq, void *dev_id)
{
    struct pxa3xx_keypad *keypad = dev_id;
    uint32_t kpc = keypad_readl(KPC);

    if (kpc & KPC_MI)
        pxa3xx_keypad_scan_matrix(keypad);

    if (kpc & KPC_DI)
        pxa3xx_keypad_scan_direct(keypad);

    return IRQ_HANDLED;
}
在irq中如果读到了key,那么会直接调用
input_report_key(keypad->input_dev,lookup_matrix_keycode(keypad, row, col),
                new_state[col] & (1 << row));
static inline unsigned int lookup_matrix_keycode(
        struct pxa3xx_keypad *keypad, int row, int col)
{
    return keypad->matrix_keycodes[(row << 3) + col];
}
input_report_key(struct input_dev *dev, unsigned int code, int value)
dev为input_dev设备,我们的4*4键盘
code为标准PC键盘码值
value为按键动作,为1表示键盘按下,为0表示按键抬起
static inline void input_report_key(struct input_dev *dev, unsigned int code, int value)
{
    input_event(dev, EV_KEY, code, !!value);
}
void input_event(struct input_dev *dev,
         unsigned int type, unsigned int code, int value)
{
    unsigned long flags;

    if (is_event_supported(type, dev->evbit, EV_MAX)) {
        spin_lock_irqsave(&dev->event_lock, flags);
        add_input_randomness(type, code, value);//因为按键的存在随机性,所以按键是给系统提供墒随机数的好来源.
        input_handle_event(dev, type, code, value);
        spin_unlock_irqrestore(&dev->event_lock, flags);
    }
}
static void input_handle_event(struct input_dev *dev,
                   unsigned int type, unsigned int code, int value)
{
    ...
        case EV_KEY:
        if (is_event_supported(code, dev->keybit, KEY_MAX) &&
            !!test_bit(code, dev->key) != value) {//这次来的是否为新的键值

            if (value != 2) {
                __change_bit(code, dev->key);//通过异或^操作,反转code对应的bitmap,如果value等于2,那么将忽略该按键
                if (value)
                    input_start_autorepeat(dev, code);//键盘按下,那么开启定时检测,这样可以出现连续输入的效果
            }

            disposition = INPUT_PASS_TO_HANDLERS;
        }
        break;
    ...
}
static void input_start_autorepeat(struct input_dev *dev, int code)
{
    if (test_bit(EV_REP, dev->evbit) &&
     dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
     dev->timer.data) {
        dev->repeat_key = code;
        mod_timer(&dev->timer,//重新启动定时器input_repeat_key,时间间隔msecs_to_jiffies(dev->rep[REP_DELAY])
             jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
    }
}

static void input_repeat_key(unsigned long data)
{
    struct input_dev *dev = (void *) data;
    unsigned long flags;

    spin_lock_irqsave(&dev->event_lock, flags);

    if (test_bit(dev->repeat_key, dev->key) &&
     is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {

        input_pass_event(dev, EV_KEY, dev->repeat_key, 2);//交给处理按键函数

        if (dev->sync) {
            /*
             * Only send SYN_REPORT if we are not in a middle
             * of driver parsing a new hardware packet.
             * Otherwise assume that the driver will send
             * SYN_REPORT once it's done.
             */

            input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
        }

        if (dev->rep[REP_PERIOD])
            mod_timer(&dev->timer, jiffies +
                    msecs_to_jiffies(dev->rep[REP_PERIOD]));
    }

    spin_unlock_irqrestore(&dev->event_lock, flags);
}

input_pass_event=>
handle->handler->event(handle, type, code, value);
就是kbd_handler的kbd_event=>kbd_keycode=>
atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param)
通知挂在keyboard链上所有等待键盘输入的应用程序,
通过register_keyboard_notifier()函数可以注册到键盘链上【gliethttp.Leith】,


input_dev = input_allocate_device();申请一个input设备空间
input_dev->open = pxa3xx_keypad_open;给这个空间填充方法
input_dev->close = pxa3xx_keypad_close;
input_dev->private = keypad;
set_bit(EV_KEY, input_dev->evbit);//键按下
set_bit(EV_REL, input_dev->evbit);//键释放
pxa3xx_keypad_build_keycode(keypad);//设备键盘映射码
该函数将根据pxa3xx_device_keypad设备下的matrix_key_map进行键控设置,
pxa_set_keypad_info(&jades_keypad_info)=>将jades_keypad_info登记为pdata;
#define MAX_MATRIX_KEY_NUM (8 * 8)
matrix_keycodes[MAX_MATRIX_KEY_NUM];表示为8*8键盘
keypad->matrix_keycodes[(row << 3) + col] = code;表示第row行的第col列处按键,代表code编码值,这个为我们内部使用.
set_bit(code, input_dev->keybit);//设置code为我们的键盘对操作系统可用的键盘值
if(pdata->direct_key_num) {
    for (i = 0; i < pdata->direct_key_num; i++) {
        set_bit(pdata->direct_key_map[i], input_dev->keybit);//快捷键单元
    }
}
set_bit(KEY_POWER, input_dev->keybit);//登记电源按键为系统可见按键
input_register_device(input_dev);=>//注册设该备devices_subsys总线上
int input_register_device(struct input_dev *dev)
{
    static atomic_t input_no = ATOMIC_INIT(0);
    struct input_handler *handler;
    const char *path;
    int error;

    __set_bit(EV_SYN, dev->evbit);

    /*
     * If delay and period are pre-set by the driver, then autorepeating
     * is handled by the driver itself and we don't do it in input.c.
     */


    init_timer(&dev->timer);
    if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
        dev->timer.data = (long) dev;
        dev->timer.function = input_repeat_key;//消抖处理函数,采用延时消抖
        dev->rep[REP_DELAY] = 500;//250;
        dev->rep[REP_PERIOD] = 66;//33;
    }

    if (!dev->getkeycode)
        dev->getkeycode = input_default_getkeycode;

    if (!dev->setkeycode)
        dev->setkeycode = input_default_setkeycode;
    //在/sys/class/input下创建以input0,input1为目录名的input类型设备
    snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
         "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);

    if (dev->cdev.dev)
        dev->dev.parent = dev->cdev.dev;

    error = device_add(&dev->dev);//将设备登记到设备总线上,之后将以目录和文件的形式呈现
    if (error)
        return error;

    path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    printk(KERN_INFO "input: %s as %s\n",
        dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
    kfree(path);

    error = mutex_lock_interruptible(&input_mutex);
    if (error) {
        device_del(&dev->dev);
        return error;
    }

    list_add_tail(&dev->node, &input_dev_list);
//将设备放到input的链表上,该链表上存放着所有input类型的dev设备对象【gliethttp.Leith】
    list_for_each_entry(handler, &input_handler_list, node)
        input_attach_handler(dev, handler);
//从input_handler_list驱动链表上尝试匹配,是否有驱动该dev设备的driver驱动,如果有,那么将匹配的驱动绑定给dev设备,来驱动这个dev.
    input_wakeup_procfs_readers();

    mutex_unlock(&input_mutex);

    return 0;
}

drivers\char\keyboard.c
kbd_init()=>
input_register_handler(&kbd_handler); 注册键盘驱动到input_handler_list链表上

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
    const struct input_device_id *id;
    int error;
//看看这个咚咚,是不是在黑名单里,如果在,那么就byebye了
【gliethttp.Leith】
    if (handler->blacklist && input_match_device(handler->blacklist, dev))
        return -ENODEV;

    id = input_match_device(handler->id_table, dev);
    if (!id)
        return -ENODEV;

    error = handler->connect(handler, dev, id);//ok,找到驱动该dev的driver,那么尝试连接
    if (error && error != -ENODEV)
        printk(KERN_ERR
            "input: failed to attach handler %s to device %s, "
            "error: %d\n",
            handler->name, kobject_name(&dev->dev.kobj), error);

    return error;
}

kbd_connect=>input_register_handle=>input_open_device=>pxa3xx_keypad_open配置键盘io口


以下内容转自:http://ericxiao.cublog.cn/

九:evdev的初始化
Evdev的模块初始化函数为evdev_init().代码如下:
static int __init evdev_init(void)
{
         return input_register_handler(&evdev_handler);
}
它调用了input_register_handler注册了一个handler.
注意到,在这里evdev_handler中定义的minor为EVDEV_MINOR_BASE(64).也就是说evdev_handler所表示的设备文件范围为(13,64)à(13,64+32).
从之前的分析我们知道.匹配成功的关键在于handler中的blacklist和id_talbe. Evdev_handler的id_table定义如下:
static const struct input_device_id evdev_ids[] = {
         { .driver_info = 1 },     /* Matches all devices */
         { },                       /* Terminating zero entry */
};
它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有input device的.从前面的分析我们知道.匹配成功之后会调用handler->connect函数.
在Evdev_handler中,该成员函数如下所示:
 
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
                             const struct input_device_id *id)
{
         struct evdev *evdev;
         int minor;
         int error;
 
         for (minor = 0; minor < EVDEV_MINORS; minor++)
                   if (!evdev_table[minor])
                            break;
 
         if (minor == EVDEV_MINORS) {
                   printk(KERN_ERR "evdev: no more free evdev devices\n");
                   return -ENFILE;
         }
EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个struct evdev类型的数组.struct evdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用.
这一段代码的在evdev_talbe找到为空的那一项.minor就是数组中第一项为空的序号.
 
         evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
         if (!evdev)
                   return -ENOMEM;
 
         INIT_LIST_HEAD(&evdev->client_list);
         spin_lock_init(&evdev->client_lock);
         mutex_init(&evdev->mutex);
         init_waitqueue_head(&evdev->wait);
 
         snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
         evdev->exist = 1;
         evdev->minor = minor;
 
         evdev->handle.dev = input_get_device(dev);
         evdev->handle.name = evdev->name;
         evdev->handle.handler = handler;
         evdev->handle.private = evdev;
接 下来,分配了一个evdev结构,并对这个结构进行初始化.在这里我们可以看到,这个结构封装了一个handle结构,这结构与我们之前所讨论的 handler是不相同的.注意有一个字母的差别哦.我们可以把handle看成是handler和input device的信息集合体.在这个结构里集合了匹配成功的handler和input device
 
         strlcpy(evdev->dev.bus_id, evdev->name, sizeof(evdev->dev.bus_id));
         evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
         evdev->dev.class = &input_class;
         evdev->dev.parent = &dev->dev;
         evdev->dev.release = evdev_free;
         device_initialize(&evdev->dev);
在这段代码里主要完成evdev封装的device的初始化.注意在这里,使它所属的类指向input_class.这样在/sysfs中创建的设备目录就会在/sys/class/input/下面显示.
 
         error = input_register_handle(&evdev->handle);
         if (error)
                   goto err_free_evdev;
         error = evdev_install_chrdev(evdev);
         if (error)
                   goto err_unregister_handle;
 
         error = device_add(&evdev->dev);
         if (error)
                   goto err_cleanup_evdev;
 
         return 0;
 
 err_cleanup_evdev:
         evdev_cleanup(evdev);
 err_unregister_handle:
         input_unregister_handle(&evdev->handle);
 err_free_evdev:
         put_device(&evdev->dev);
         return error;
}
注册handle,如果是成功的,那么调用evdev_install_chrdev将evdev_table的minor项指向evdev. 然后将evdev->device注册到sysfs.如果失败,将进行相关的错误处理.
万事俱备了,但是要接收事件,还得要等”东风”.这个”东风”就是要打开相应的handle.这个打开过程是在文件的open()中完成的.
 
十:evdev设备结点的open()操作
我们知道.对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集.在evdev中,这个操作集就是evdev_fops.对应的open函数如下示:
static int evdev_open(struct inode *inode, struct file *file)
{
         struct evdev *evdev;
         struct evdev_client *client;
         int i = iminor(inode) - EVDEV_MINOR_BASE;
         int error;
 
         if (i >= EVDEV_MINORS)
                   return -ENODEV;
 
         error = mutex_lock_interruptible(&evdev_table_mutex);
         if (error)
                   return error;
         evdev = evdev_table[i];
         if (evdev)
                   get_device(&evdev->dev);
         mutex_unlock(&evdev_table_mutex);
 
         if (!evdev)
                   return -ENODEV;
 
         client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
         if (!client) {
                   error = -ENOMEM;
                   goto err_put_evdev;
         }
         spin_lock_init(&client->buffer_lock);
         client->evdev = evdev;
         evdev_attach_client(evdev, client);
 
         error = evdev_open_device(evdev);
         if (error)
                   goto err_free_client;
 
         file->private_data = client;
         return 0;
 
 err_free_client:
         evdev_detach_client(evdev, client);
         kfree(client);
 err_put_evdev:
         put_device(&evdev->dev);
         return error;
}
iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数.
分配并初始化一个client.并将它和evdev关联起来: client->evdev指向它所表示的evdev. 将client挂到evdev->client_list上. 将client赋为file的私有区.
对应handle的打开是在此evdev_open_device()中完成的.代码如下:
static int evdev_open_device(struct evdev *evdev)
{
         int retval;
 
         retval = mutex_lock_interruptible(&evdev->mutex);
         if (retval)
                   return retval;
 
         if (!evdev->exist)
                   retval = -ENODEV;
         else if (!evdev->open++) {
                   retval = input_open_device(&evdev->handle);
                   if (retval)
                            evdev->open--;
         }
 
         mutex_unlock(&evdev->mutex);
         return retval;
}
如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle.跟踪一下这个函数:
int input_open_device(struct input_handle *handle)
{
         struct input_dev *dev = handle->dev;
         int retval;
 
         retval = mutex_lock_interruptible(&dev->mutex);
         if (retval)
                   return retval;
 
         if (dev->going_away) {
                   retval = -ENODEV;
                   goto out;
         }
 
         handle->open++;
 
         if (!dev->users++ && dev->open)
                   retval = dev->open(dev);
 
         if (retval) {
                   dev->users--;
                   if (!--handle->open) {
                            /*
                             * Make sure we are not delivering any more events
                             * through this handle
                             */
                            synchronize_rcu();
                   }
         }
 
 out:
         mutex_unlock(&dev->mutex);
         return retval;
}
在这个函数中,我们看到.递增handle的打开计数.如果是第一次打开.则调用input device的open()函数.
 
十一:evdev的事件处理
经过上面的分析.每当input device上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为:
static void evdev_event(struct input_handle *handle,
                            unsigned int type, unsigned int code, int value)
{
         struct evdev *evdev = handle->private;
         struct evdev_client *client;
         struct input_event event;
 
         do_gettimeofday(&event.time);
         event.type = type;
         event.code = code;
         event.value = value;
 
         rcu_read_lock();
 
         client = rcu_dereference(evdev->grab);
         if (client)
                   evdev_pass_event(client, &event);
         else
                   list_for_each_entry_rcu(client, &evdev->client_list, node)
                            evdev_pass_event(client, &event);
 
         rcu_read_unlock();
 
         wake_up_interruptible(&evdev->wait);
}
首先构造一个struct input_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用如之对应的client.
我们在open的时候分析到.会初始化clinet并将其链入到evdev->client_list. 这样,就可以通过evdev->client_list找到这个client了.
对于找到的第一个client都会调用evdev_pass_event( ).代码如下:
static void evdev_pass_event(struct evdev_client *client,
                                 struct input_event *event)
{
         /*
          * Interrupts are disabled, just acquire the lock
          */
         spin_lock(&client->buffer_lock);
         client->buffer[client->head++] = *event;
         client->head &= EVDEV_BUFFER_SIZE - 1;
         spin_unlock(&client->buffer_lock);
 
         kill_fasync(&client->fasync, SIGIO, POLL_IN);
}
这里的操作很简单.就是将event保存到client->buffer中.而client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读.
 
十二:设备节点的read处理
对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下:
static ssize_t evdev_read(struct file *file, char __user *buffer,
                              size_t count, loff_t *ppos)
{
         struct evdev_client *client = file->private_data;
         struct evdev *evdev = client->evdev;
         struct input_event event;
         int retval;
 
         if (count < evdev_event_size())
                   return -EINVAL;
 
         if (client->head == client->tail && evdev->exist &&
             (file->f_flags & O_NONBLOCK))
                   return -EAGAIN;
 
         retval = wait_event_interruptible(evdev->wait,
                   client->head != client->tail || !evdev->exist);
         if (retval)
                   return retval;
 
         if (!evdev->exist)
                   return -ENODEV;
 
         while (retval + evdev_event_size() <= count &&
                evdev_fetch_next_event(client, &event)) {
 
                   if (evdev_event_to_user(buffer + retval, &event))
                            return -EFAULT;
 
                   retval += evdev_event_size();
         }
 
         return retval;
}
首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据.如果在睡眠的时候,.条件满足.是不会进行睡眠状态而直接返回的.
然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中.
十三:设备节点的写操作
同样.对设备节点的写操作是由evdev_write()完成的.代码如下:
 
static ssize_t evdev_write(struct file *file, const char __user *buffer,
                               size_t count, loff_t *ppos)
{
         struct evdev_client *client = file->private_data;
         struct evdev *evdev = client->evdev;
         struct input_event event;
         int retval;
 
         retval = mutex_lock_interruptible(&evdev->mutex);
         if (retval)
                   return retval;
 
         if (!evdev->exist) {
                   retval = -ENODEV;
                   goto out;
         }
 
         while (retval < count) {
 
                   if (evdev_event_from_user(buffer + retval, &event)) {
                            retval = -EFAULT;
                            goto out;
                   }
 
                   input_inject_event(&evdev->handle,
                                        event.type, event.code, event.value);
                   retval += evdev_event_size();
         }
 
 out:
         mutex_unlock(&evdev->mutex);
         return retval;
}
首先取得操作设备文件所对应的evdev.
实际上,这里写入设备文件的是一个event结构的数组.我们在之前分析过,这个结构里包含了事件的type.code和event.
将写入设备的event数组取出.然后对每一项调用event_inject_event().
这个函数的操作和input_event()差不多.就是将第一个参数handle转换为输入设备结构.然后这个设备再产生一个事件.
代码如下:
void input_inject_event(struct input_handle *handle,
                            unsigned int type, unsigned int code, int value)
{
         struct input_dev *dev = handle->dev;
         struct input_handle *grab;
         unsigned long flags;
 
         if (is_event_supported(type, dev->evbit, EV_MAX)) {
                   spin_lock_irqsave(&dev->event_lock, flags);
 
                   rcu_read_lock();
                   grab = rcu_dereference(dev->grab);
                   if (!grab || grab == handle)
                            input_handle_event(dev, type, code, value);
                   rcu_read_unlock();
 
                   spin_unlock_irqrestore(&dev->event_lock, flags);
         }
}
我们在这里也可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配.
由此可见.对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件.
将上述设备文件的操作过程以图的方式表示如下:
 
 
十四:小结
在 这一节点,分析了整个input子系统的架构,各个环节的流程.最后还以evdev为例.将各个流程贯穿在一起.以加深对input子系统的理解.由此也 可以看出.linux设备驱动采用了分层的模式.从最下层的设备模型到设备,驱动,总线再到input子系统最后到input device.这样的分层结构使得最上层的驱动不必关心下层是怎么实现的.而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口.


一:前言
在键盘驱动代码分析的笔记中,接触到了input子系统.键盘驱动,键盘驱动将检测到的所有按键都上报给了input子系统。Input子系统 是所有I/O设备驱动的中间层,为上层提供了一个统一的界面。例如,在终端系统中,我们不需要去管有多少个键盘,多少个鼠标。它只要从input子系统中 去取对应的事件(按键,鼠标移位等)就可以了。今天就对input子系统做一个详尽的分析.
下面的代码是基于linux kernel 2.6.25.分析的代码主要位于kernel2.6.25/drivers/input下面.
二:使用input子系统的例子
在内核自带的文档Documentation/input/input-programming.txt中。有一个使用input子系统的例子,并附带相应的说明。以此为例分析如下:
#include
#include
#include
 
#include
#include
 
static void button_interrupt(int irq, void *dummy, struct pt_regs *fp)
{
        input_report_key(&button_dev, BTN_1, inb(BUTTON_PORT) & 1);
        input_sync(&button_dev);
}
 
static int __init button_init(void)
{
        if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }
 
        button_dev.evbit[0] = BIT(EV_KEY);
        button_dev.keybit[LONG(BTN_0)] = BIT(BTN_0);
 
        input_register_device(&button_dev);
}
 
static void __exit button_exit(void)
{
        input_unregister_device(&button_dev);
        free_irq(BUTTON_IRQ, button_interrupt);
}
 
module_init(button_init);
module_exit(button_exit);
 
这个示例module代码还是比较简单,在初始化函数里注册了一个中断处理例程。然后注册了一个input device.在中断处理程序里,将接收到的按键上报给input子系统。
文档的作者在之后的分析里又对这个module作了优化。主要是在注册中断处理的时序上。在修改过后的代码里,为input device定义了open函数,在open的时候再去注册中断处理例程。具体的信息请自行参考这篇文档。在资料缺乏的情况下,kernel自带的文档就 是剖析kernel相关知识的最好资料.
文档的作者还分析了几个api函数。列举如下:
 
1):set_bit(EV_KEY, button_dev.evbit);
   set_bit(BTN_0, button_dev.keybit);
分别用来设置设备所产生的事件以及上报的按键值。Struct iput_dev中有两个成员,一个是evbit.一个是keybit.分别用表示设备所支持的动作和按键类型。
2): input_register_device(&button_dev);
用来注册一个input device.
3): input_report_key()
用于给上层上报一个按键动作
4): input_sync()
用来告诉上层,本次的事件已经完成了.
5): NBITS(x) - returns the length of a bitfield array in longs for x bits
    LONG(x)  - returns the index in the array in longs for bit x
BIT(x)   - returns the index in a long for bit x     
这几个宏在input子系统中经常用到。上面的英文解释已经很清楚了。
阅读(1236) | 评论(0) | 转发(0) |
0

上一篇:让嵌入式Linux支持LCD console

下一篇:Android

给主人留下些什么吧!~~