本文参照《操作系统:设计与实现》,文章中很多语句与图表来自此书。
在POSIX中,OPEN调用可以用于创建一个新文件和截断一个老文件,因此CREAT调用实现的是OPEN的一个子集。MINIX中CREAT和OPEN的过程分别是do_creat()和do_open()来实现,这些函数位于/src/fs/open.c中。
打开或创建一个文件包括三步:
1)找到i-节点(创建文件时需要进行分配和初始化)
2)找到或创建目录项
3)为文件建立并返回一个描述符
这两个函数都做两件事:获取文件名,并调用common_open()。
此函数如下所示:
PRIVATE int common_open(oflags, omode)
register int oflags;
mode_t omode;
{
/* Common code from do_creat and do_open. */
register struct inode *rip;
int r, b, major, task, exist = TRUE;
dev_t dev;
mode_t bits;
off_t pos;
struct filp *fil_ptr, *filp2;
/* Remap the bottom two bits of oflags. */
bits = (mode_t) mode_map[oflags & O_ACCMODE];
/* See if file descriptor and filp slots are available. 是否有可用的文件描述符*/
if ( (r = get_fd(0, bits, &fd, &fil_ptr)) != OK) return(r);
/* If O_CREATE is set, try to make the file. */
if (oflags & O_CREAT) {
/* Create a new inode by calling new_node(). 为文件创建i节点,i节点唯一的标识和描述着一个文件,这是最重要的一步*/
omode = I_REGULAR | (omode & ALL_MODES & fp->fp_umask);
rip = new_node(user_path, omode, NO_ZONE);
r = err_code;
if (r == OK) exist = FALSE; /* we just created the file */
else if (r != EEXIST) return(r); /* other error */
else exist = !(oflags & O_EXCL); /* file exists, if the O_EXCL
flag is set this is an error */
} else {
/* Scan path name. */
if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
}
/* Claim the file descriptor and filp slot and fill them in.
* 设置文件描述符,我们知道一个进程在minix中有三部分,分别是:struct proc ,
* struct fproc和struct mproc。这三者共同描述了一个进程,第一个主要描述了CPU的
* 寄存器栈帧结构,第二个描述了其所拥有的文件的相关信息,最后一个描述了其所用有的
* 内存信息。此处的struct fproc中的*fp_file[OPEN_MAX]数组则是其文件描述符指针表,
*其标记* 了文件所拥有的文件描述符,此表中的文件描述符指针指向系统唯一的文件描述符数
*组: filp[NR_FILPS]其中NR_FILPS为128。
*/
fp->fp_filp[fd] = fil_ptr;
fil_ptr->filp_count = 1;
fil_ptr->filp_ino = rip;
fil_ptr->filp_flags = oflags;
/* Only do the normal open code if we didn't just create the file. */
if (exist) {
/* Check protections. 接下来就是检查文件的类型、模式等*/
if ((r = forbidden(rip, bits)) == OK) {
/* Opening reg. files directories and special files differ. */
switch (rip->i_mode & I_TYPE) {
case I_REGULAR:
/* Truncate regular file if O_TRUNC. */
if (oflags & O_TRUNC) {
if ((r = forbidden(rip, W_BIT)) !=OK) break;
truncate(rip);
wipe_inode(rip);
/* Send the inode from the inode cache to the
* block cache, so it gets written on the next
* cache flush.
*/
rw_inode(rip, WRITING);
}
break;
case I_DIRECTORY:
/* Directories may be read but not written. */
r = (bits & W_BIT ? EISDIR : OK);
break;
case I_CHAR_SPECIAL:
case I_BLOCK_SPECIAL:
/* Invoke the driver for special processing. */
dev_mess.m_type = DEV_OPEN;
dev = (dev_t) rip->i_zone[0];
dev_mess.DEVICE = dev;
dev_mess.COUNT = bits | (oflags & ~O_ACCMODE);
major = (dev >> MAJOR) & BYTE; /* major device nr */
if (major <= 0 || major >= max_major) {
r = ENODEV;
break;
}
task = dmap[major].dmap_task; /* device task nr */
(*dmap[major].dmap_open)(task, &dev_mess);
r = dev_mess.REP_STATUS;
break;
case I_NAMED_PIPE:
oflags |= O_APPEND; /* force append mode */
fil_ptr->filp_flags = oflags;
r = pipe_open(rip, bits, oflags);
if (r == OK) {
/* See if someone else is doing a rd or wt on
* the FIFO. If so, use its filp entry so the
* file position will be automatically shared.
*/
b = (bits & R_BIT ? R_BIT : W_BIT);
fil_ptr->filp_count = 0; /* don't find self */
if ((filp2 = find_filp(rip, b)) != NIL_FILP) {
/* Co-reader or writer found. Use it.*/
fp->fp_filp[fd] = filp2;
filp2->filp_count++;
filp2->filp_ino = rip;
filp2->filp_flags = oflags;
/* i_count was incremented incorrectly
* by eatpath above, not knowing that
* we were going to use an existing
* filp entry. Correct this error.
*/
rip->i_count--;
} else {
/* Nobody else found. Restore filp. */
fil_ptr->filp_count = 1;
if (b == R_BIT)
pos = rip->i_zone[V2_NR_DZONES+1];
else
pos = rip->i_zone[V2_NR_DZONES+2];
fil_ptr->filp_pos = pos;
}
}
break;
}
}
}
/* If error, release inode. */
if (r != OK) {
fp->fp_filp[fd] = NIL_FILP;
fil_ptr->filp_count= 0;
put_inode(rip);
return(r);
}
/*返回创建文件的文件描述符,此文件描述符为,fproc[]中的数组*fp_filp[OPEN_MAX]的某个索引
* 此处的OPEN_MAX位20.即一个进程可以拥有20个文件描述符
*/
return(fd);
}
此处的process table 实为fproc[]数组。通过该结构体中的*fp_filp[OPEN_MAX]数组指针来指向
filp[NR_FILPS]文件描述符数组,最终指向具体的i节点,此处的i节点是在内存的i节点数组
inode[NR_INODES]中。最终创建的新文件的i节点设置好后会立刻写入到磁盘中去。所以创建文件的主要操作就是在磁盘中为其创建i节点。因为一个磁盘中的i节点才唯一的描述一个文件或目录。下面来看看创建i节点函数:new_node()
此函数负责分配i-节点,并为CREAT和OPEN把路径名加到文件系统中。例如我们创建一个函数调用如下操作:
fd=creat("/usr/ast/foobar",0755);
PRIVATE struct inode *new_node(path, bits, z0)
char *path; /* pointer to path name */
mode_t bits; /* mode of the new inode */
zone_t z0; /* zone number 0 for new inode */
{
/* New_node() is called by common_open(), do_mknod(), and do_mkdir().
* In all cases it allocates a new inode, makes a directory entry for it on
* the path 'path', and initializes it. It returns a pointer to the inode if
* it can do this; otherwise it returns NIL_INODE. It always sets 'err_code'
* to an appropriate value (OK or an error code).
*/
register struct inode *rlast_dir_ptr, *rip;
register int r;
char string[NAME_MAX];
/* See if the path can be opened down to the last directory.
* last_dir()函数,逐步对上述目录/usr/ast/foobar进行迭代,过程是这样的,先从内存中得到
* 根目录/的i节点或当前目录的i节点,因为有创建文件时会用相对目录即进程当前运行目录
* 如:../ast/foobar进行创建。此处是得到根目录/的i节点,不管是目录文件还是普通文件,都是
* 用i节点来唯一标示,通过i节点才能找到其真正的数据块.last_dir()通过get_name()函数,将
* 字符串/usr/ast/foobar分解为/ast/foobar和usr,然后通过advance()函数的到根目录的数据块
*,我们知道目录文件的数据块中存储的是目录,然后在此数据块中找到字符串为usr的目录项,找到了
* 该目录项我们就知道了其对应的i节点号,然后加载其i节点,继续通过get_name()将字符串分解为
* /foobar和ast。重复上一过程,加载usr目录的数据块,从而得到ast目录的i节点号,最后一次调用
* get_name()函数分解/foobar,函数会碰到字符串结束符'\0'.从而last_dir()的主要工作完成,
* 即得到了将要创建的/foobar目录的上一目录ast的i节点。
*/
if ((rlast_dir_ptr = last_dir(path, string)) == NIL_INODE) return(NIL_INODE);
/* The final directory is accessible. Get final component of the path. */
rip = advance(rlast_dir_ptr, string);
if ( rip == NIL_INODE && err_code == ENOENT) {
/* Last path component does not exist. Make new directory entry. */
if ( (rip = alloc_inode(rlast_dir_ptr->i_dev, bits)) == NIL_INODE) {
/* Can't creat new inode: out of inodes. */
put_inode(rlast_dir_ptr);
return(NIL_INODE);
}
/* Force inode to the disk before making directory entry to make
* the system more robust in the face of a crash: an inode with
* no directory entry is much better than the opposite.
*/
rip->i_nlinks++;
rip->i_zone[0] = z0; /* major/minor device numbers */
rw_inode(rip, WRITING); /* force inode to disk now */
/* New inode acquired. Try to make directory entry. */
if ((r = search_dir(rlast_dir_ptr, string, &rip->i_num,ENTER)) != OK) {
put_inode(rlast_dir_ptr);
rip->i_nlinks--; /* pity, have to free disk inode */
rip->i_dirt = DIRTY; /* dirty inodes are written out */
put_inode(rip); /* this call frees the inode */
err_code = r;
return(NIL_INODE);
}
} else {
/* Either last component exists, or there is some problem. */
if (rip != NIL_INODE)
r = EEXIST;
else
r = err_code;
}
/* Return the directory inode and exit. */
put_inode(rlast_dir_ptr);
err_code = r;
return(rip);
}
目录如下所示:
last_dir函数代码如下所示:
PUBLIC struct inode *last_dir(path, string)
char *path; /* the path name to be parsed */
char string[NAME_MAX]; /* the final component is returned here */
{
/* Given a path, 'path', located in the fs address space, parse it as
* far as the last directory, fetch the inode for the last directory into
* the inode table, and return a pointer to the inode. In
* addition, return the final component of the path in 'string'.
* If the last directory can't be opened, return NIL_INODE and
* the reason for failure in 'err_code'.
*/
register struct inode *rip;
register char *new_name;
register struct inode *new_ip;
/* Is the path absolute or relative? Initialize 'rip' accordingly. ,得到根目录或
* 当前目录的i节点。*/
rip = (*path == '/' ? fp->fp_rootdir : fp->fp_workdir);
/* If dir has been removed or path is empty, return ENOENT. */
if (rip->i_nlinks == 0 || *path == '\0') {
err_code = ENOENT;
return(NIL_INODE);
}
dup_inode(rip); /* inode will be returned with put_inode ,增加i节点的引用索引*/
/* Scan the path component by component. */
while (TRUE) {
/* Extract one component. 逐步从头至尾解析路径*/
if ( (new_name = get_name(path, string)) == (char*) 0) {
put_inode(rip); /* bad path in user space */
return(NIL_INODE);
}
if (*new_name == '\0')/*路径解析完成,指向字符数组的末尾*/
if ( (rip->i_mode & I_TYPE) == I_DIRECTORY)
return(rip); /* normal exit ,返回/usr/ast路径的i节点,即目录ast的i节点*/
else {
/* last file of path prefix is not a directory */
put_inode(rip);
err_code = ENOTDIR;
return(NIL_INODE);
}
/* There is more path. Keep parsing,在当前i节点中查找string字符串所指向路径的i节点
*/
new_ip = advance(rip, string);
put_inode(rip); /* rip either obsolete or irrelevant */
if (new_ip == NIL_INODE) return(NIL_INODE);
/* The call to advance() succeeded. Fetch next component. */
path = new_name;
rip = new_ip;
}
}
get_name()函数如下所示:
PRIVATE char *get_name(old_name, string)
char *old_name; /* path name to parse */
char string[NAME_MAX]; /* component extracted from 'old_name' */
{
/* Given a pointer to a path name in fs space, 'old_name', copy the next
* component to 'string' and pad with zeros. A pointer to that part of
* the name as yet unparsed is returned. Roughly speaking,
* 'get_name' = 'old_name' - 'string'.
*
* This routine follows the standard convention that /usr/ast, /usr//ast,
* //usr///ast and /usr/ast/ are all equivalent.
* 解析路径,比如字符串“/usr/ast/foobar”,将解析如下/ast/foobar和字符串usr,usr字符串
* 保存在string字符数组中。
*/
register int c;
register char *np, *rnp;
np = string; /* 'np' points to current position */
rnp = old_name; /* 'rnp' points to unparsed string */
while ( (c = *rnp) == '/') rnp++; /* skip leading slashes */
/* Copy the unparsed path, 'old_name', to the array, 'string'. */
while ( rnp < &old_name[PATH_MAX] && c != '/' && c != '\0') {
if (np < &string[NAME_MAX]) *np++ = c;
c = *++rnp; /* advance to next character */
}
/* To make /usr/ast/ equivalent to /usr/ast, skip trailing slashes. */
while (c == '/' && rnp < &old_name[PATH_MAX]) c = *++rnp;
if (np < &string[NAME_MAX]) *np = '\0'; /* Terminate string */
if (rnp >= &old_name[PATH_MAX]) {
err_code = ENAMETOOLONG;
return((char *) 0);
}
return(rnp);/*此处get_name()函数会被迭代调用直到将路径全部解析完成,如果正常解析,那么当路
*径全部解析完后,rnp会指向old_name[]数组的最后一个字符,即'\0'
*/
}
advance()函数在给定的i节点中查找某一目录,若查找到该目录则返回其i节点。该函数如下所示:
PUBLIC struct inode *advance(dirp, string)
struct inode *dirp; /* inode for directory to be searched */
char string[NAME_MAX]; /* component name to look for */
{
/* Given a directory and a component of a path, look up the component in
* the directory, find the inode, open it, and return a pointer to its inode
* slot. If it can't be done, return NIL_INODE.
*/
register struct inode *rip;
struct inode *rip2;
register struct super_block *sp;
int r, inumb;
dev_t mnt_dev;
ino_t numb;
/* If 'string' is empty, yield same inode straight away. */
if (string[0] == '\0') return(get_inode(dirp->i_dev, (int) dirp->i_num));
/* Check for NIL_INODE. */
if (dirp == NIL_INODE) return(NIL_INODE);
/* If 'string' is not present in the directory, signal error.
*在i节点中查找string所指向的目录,如找到,numb则返回其i节点号。
*/
if ( (r = search_dir(dirp, string, &numb, LOOK_UP)) != OK) {
err_code = r;
return(NIL_INODE);
}
/* Don't go beyond the current root directory, unless the string is dot2. */
if (dirp == fp->fp_rootdir && strcmp(string, "..") == 0 && string != dot2)
return(get_inode(dirp->i_dev, (int) dirp->i_num));
/* The component has been found in the directory. Get inode. 取得对应
* i节点号的i节点。*/
if ( (rip = get_inode(dirp->i_dev, (int) numb)) == NIL_INODE)
return(NIL_INODE);
if (rip->i_num == ROOT_INODE)
if (dirp->i_num == ROOT_INODE) {
if (string[1] == '.') {
for (sp = &super_block[1]; sp < &super_block[NR_SUPERS]; sp++){
if (sp->s_dev == rip->i_dev) {
/* Release the root inode. Replace by the
* inode mounted on.
*/
put_inode(rip);
mnt_dev = sp->s_imount->i_dev;
inumb = (int) sp->s_imount->i_num;
rip2 = get_inode(mnt_dev, inumb);
rip = advance(rip2, string);
put_inode(rip2);
break;
}
}
}
}
if (rip == NIL_INODE) return(NIL_INODE);
/* See if the inode is mounted on. If so, switch to root directory of the
* mounted file system. The super_block provides the linkage between the
* inode mounted on and the root directory of the mounted file system.
*/
while (rip != NIL_INODE && rip->i_mount == I_MOUNT) {
/* The inode is indeed mounted on. */
for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) {
if (sp->s_imount == rip) {
/* Release the inode mounted on. Replace by the
* inode of the root inode of the mounted device.
*/
put_inode(rip);
rip = get_inode(sp->s_dev, ROOT_INODE);
break;
}
}
}
return(rip); /* return pointer to inode's component */
}
在某一i节点所代表的目录中查找某一目录,是通过调用search_dir()来完成的。该函数如下所示:
PUBLIC int search_dir(ldir_ptr, string, numb, flag)
register struct inode *ldir_ptr; /* ptr to inode for dir to search */
char string[NAME_MAX]; /* component to search for */
ino_t *numb; /* pointer to inode number */
int flag; /* LOOK_UP, ENTER, DELETE or IS_EMPTY */
{
/* This function searches the directory whose inode is pointed to by 'ldip':
* if (flag == ENTER) enter 'string' in the directory with inode # '*numb';
* if (flag == DELETE) delete 'string' from the directory;
* if (flag == LOOK_UP) search for 'string' and return inode # in 'numb';
* if (flag == IS_EMPTY) return OK if only . and .. in dir else ENOTEMPTY;
*
* if 'string' is dot1 or dot2, no access permissions are checked.
*/
register struct direct *dp;
register struct buf *bp;
int i, r, e_hit, t, match;
mode_t bits;
off_t pos;
unsigned new_slots, old_slots;
block_t b;
struct super_block *sp;
int extended = 0;
/* If 'ldir_ptr' is not a pointer to a dir inode, error. */
if ( (ldir_ptr->i_mode & I_TYPE) != I_DIRECTORY) return(ENOTDIR);
r = OK;
if (flag != IS_EMPTY) {
bits = (flag == LOOK_UP ? X_BIT : W_BIT | X_BIT);
if (string == dot1 || string == dot2) {
if (flag != LOOK_UP) r = read_only(ldir_ptr);
/* only a writable device is required. */
}
else r = forbidden(ldir_ptr, bits); /* check access permissions */
}
if (r != OK) return(r);
/* Step through the directory one block at a time. */
old_slots = (unsigned) (ldir_ptr->i_size/DIR_ENTRY_SIZE);
new_slots = 0;
e_hit = FALSE;
match = 0; /* set when a string match occurs */
/*read_map()函数以i节点为基础,根据文件的偏移来确定对应偏移的数据块块号,此处的i节点是
*指向目录文件的i节点,找到对应偏移的数据块号后,返回其块号。
*/
for (pos = 0; pos < ldir_ptr->i_size; pos += BLOCK_SIZE) {
b = read_map(ldir_ptr, pos); /* get block number */
/* Since directories don't have holes, 'b' cannot be NO_BLOCK. */
bp = get_block(ldir_ptr->i_dev, b, NORMAL); /* get a dir block 加载该数据块*/
/* Search a directory block. */
for (dp = &bp->b_dir[0]; dp < &bp->b_dir[NR_DIR_ENTRIES]; dp++) {
if (++new_slots > old_slots) { /* not found, but room left */
if (flag == ENTER) e_hit = TRUE;
break;
}
/* Match occurs if string found. */
if (flag != ENTER && dp->d_ino != 0) {
if (flag == IS_EMPTY) {
/* If this test succeeds, dir is not empty. */
if (strcmp(dp->d_name, "." ) != 0 &&
strcmp(dp->d_name, "..") != 0) match = 1;
} else {/*在该数据块中查找string字符串对应的目录,找到则match置1,dp指向该目录项*/
if (strncmp(dp->d_name, string, NAME_MAX) == 0)
match = 1;
}
}
if (match) {
/* LOOK_UP or DELETE found what it wanted. */
r = OK;
if (flag == IS_EMPTY) r = ENOTEMPTY;
else if (flag == DELETE) {
/* Save d_ino for recovery. */
t = NAME_MAX - sizeof(ino_t);
*((ino_t *) &dp->d_name[t]) = dp->d_ino;
dp->d_ino = 0; /* erase entry */
bp->b_dirt = DIRTY;
ldir_ptr->i_update |= CTIME | MTIME;
ldir_ptr->i_dirt = DIRTY;
} else {
/*通过conv2()函数判断是否需要大小端互换,*numb中最终存储了找到的目录的i节点号
*将以指针参数的形式返回*/
sp = ldir_ptr->i_sp; /* 'flag' is LOOK_UP */
*numb = conv2(sp->s_native, (int) dp->d_ino);
}
put_block(bp, DIRECTORY_BLOCK);
return(r);
}
/* Check for free slot for the benefit of ENTER. */
if (flag == ENTER && dp->d_ino == 0) {
e_hit = TRUE; /* we found a free slot */
break;
}
}
/* The whole block has been searched or ENTER has a free slot. */
if (e_hit) break; /* e_hit set if ENTER can be performed now */
put_block(bp, DIRECTORY_BLOCK); /* otherwise, continue searching dir */
}
/* The whole directory has now been searched. */
if (flag != ENTER) return(flag == IS_EMPTY ? OK : ENOENT);
/* This call is for ENTER. If no free slot has been found so far, try to
* extend directory.
*/
if (e_hit == FALSE) { /* directory is full and no room left in last block */
new_slots++; /* increase directory size by 1 entry */
if (new_slots == 0) return(EFBIG); /* dir size limited by slot count */
if ( (bp = new_block(ldir_ptr, ldir_ptr->i_size)) == NIL_BUF)
return(err_code);
dp = &bp->b_dir[0];
extended = 1;
}
/* 'bp' now points to a directory block with space. 'dp' points to slot. */
(void) memset(dp->d_name, 0, (size_t) NAME_MAX); /* clear entry */
for (i = 0; string[i] && i < NAME_MAX; i++) dp->d_name[i] = string[i];
sp = ldir_ptr->i_sp;
dp->d_ino = conv2(sp->s_native, (int) *numb);
bp->b_dirt = DIRTY;
put_block(bp, DIRECTORY_BLOCK);
ldir_ptr->i_update |= CTIME | MTIME; /* mark mtime for update later */
ldir_ptr->i_dirt = DIRTY;
if (new_slots > old_slots) {
ldir_ptr->i_size = (off_t) new_slots * DIR_ENTRY_SIZE;
/* Send the change to disk if the directory is extended. */
if (extended) rw_inode(ldir_ptr, WRITING);
}
return(OK);
}
我们知道不管是目录文件还是普通文件都是通过i节点来唯一标识,read_map()函数会根据文件中的位移来确
定该位移是位于哪一数据块中。i节点中有一个表项是zone_t i_zone[V2_NR_TZONES];此处
V2_NR_TZONES=10在V1版本中为9,前7个表项用于直接区段,第八个用于一次间接区段,第九个用于二次
间接区段,第十个表现保留扩展。前七个用于数据位移小于七KB的文件,以此类推,read_map()就是通过计
算文件位移来确定它是位于这是个表项中的哪一个,如果是位于一次间接区段中,则需要根据第八个表项中存
储的数据块号,加载该数据块,在该数据块中继续计算该位移是属于该数据块中的第几个表项,该表项中存储
的便是要查找的数据块块号,从而返回该数据块号。二次间接块原理类似。原理如图所示:
该函数具体如下:
PUBLIC block_t read_map(rip, position)
register struct inode *rip; /* ptr to inode to map from */
off_t position; /* position in file whose blk wanted */
{
/* Given an inode and a position within the corresponding file, locate the
* block (not zone) number in which that position is to be found and return it.
*/
register struct buf *bp;
register zone_t z;
int scale, boff, dzones, nr_indirects, index, zind, ex;
block_t b;
long excess, zone, block_pos;
scale = rip->i_sp->s_log_zone_size; /* for block-zone conversion */
block_pos = position/BLOCK_SIZE; /* relative blk # in file */
zone = block_pos >> scale; /* position's zone */
boff = (int) (block_pos - (zone << scale) ); /* relative blk # within zone */
dzones = rip->i_ndzones;
nr_indirects = rip->i_nindirs;
/* Is 'position' to be found in the inode itself? */
if (zone < dzones) {
zind = (int) zone; /* index should be an int */
z = rip->i_zone[zind];
if (z == NO_ZONE) return(NO_BLOCK);
b = ((block_t) z << scale) + boff;
return(b);/*返回找到的块号*/
}
/* It is not in the inode, so it must be single or double indirect. */
excess = zone - dzones; /* first Vx_NR_DZONES don't count */
if (excess < nr_indirects) {
/* 'position' can be located via the single indirect block. 一次间接块*/
z = rip->i_zone[dzones];/*得到一次间接块的的块号*/
} else {
/* 'position' can be located via the double indirect block.二次间接块操作 */
if ( (z = rip->i_zone[dzones+1]) == NO_ZONE) return(NO_BLOCK);
excess -= nr_indirects; /* single indir doesn't count*/
b = (block_t) z << scale;
bp = get_block(rip->i_dev, b, NORMAL); /* get double indirect block */
/*找到其在第一次间接块中的偏移,此偏移的条目指向着二次间接块,因为除法是按块的N的
*整数倍来计算,此处nr_indirects应该等于一个块中所存储的目录数乘以块的大小,此处块的大小
*为1024
*/
index = (int) (excess/nr_indirects);
z = rd_indir(bp, index); /* z= zone for single*/
put_block(bp, INDIRECT_BLOCK); /* release double ind block */
/* index into single ind blk ,找到其在第二次间接块中的偏移*/
excess = excess % nr_indirects;
}
/*接下来的操作一次和二次间接块操作一样,因为经过上面的操作二次间接块在逻辑上已经和一次间接
*块一样
*/
/* 'z' is zone num for single indirect block; 'excess' is index into it. */
if (z == NO_ZONE) return(NO_BLOCK);
b = (block_t) z << scale; /* b is blk # for single ind */
bp = get_block(rip->i_dev, b, NORMAL); /* get single indirect block */
ex = (int) excess; /* need an integer */
z = rd_indir(bp, ex); /* get block pointed to */
put_block(bp, INDIRECT_BLOCK); /* release single indir blk */
if (z == NO_ZONE) return(NO_BLOCK);
b = ((block_t) z << scale) + boff;
return(b);/*返回找到的块号*/
}
conv2()函数根据机器类型交换大小端数据。
PUBLIC unsigned conv2(norm, w)
int norm; /* TRUE if no swap, FALSE for byte swap */
int w; /* promotion of 16-bit word to be swapped */
{
/* Possibly swap a 16-bit word between 8086 and 68000 byte order. */
if (norm) return( (unsigned) w & 0xFFFF);
return( ((w&BYTE) << 8) | ( (w>>8) & BYTE));
}