分类: C/C++
2008-05-19 21:08:18
来源: | |||||
| |||||
背景 C++内存分配与均由用户代码自行控制,灵活的机制有如潘多拉之盒,即让程序员有了更广的发挥空间,也产生了代代相传的内存泄漏问题。对于新手来说,最常犯的错误就是new出一个对象而忘记释放,对于一般小应用程序来说,一点内存空间不算什么。但是当内存泄漏问题出现在需要24小时运行的类程序上的时候,将会使系统可用内存飞速减少,最后耗尽系统资源,导致系统崩溃。 所以学会如何防止并检查内存泄漏,是一个合格的c++程序员必须具备的能力。但是由于内存泄漏是程序运行并满足一定条件时才会发生,直接从代码中查出泄漏原因的难度较大,而且一旦内存泄漏发生在多线程程序中,从大量的代码中要靠人工找出泄漏原因,无论对新人还是老手都是一场噩梦。 本文介绍一种在vs2003中检查内存泄漏的方法,供各位新人老手,在vc6中实现需要做一些变动,详情可自行参照相关资料。 检查策略分析 首先,假定我们需要检测一个24小时运行的平台程序的内存泄漏情况,我们无法确定具体的内存泄漏速度,但是我们可以确定该程序在一定内(如10分钟)泄漏的内存量是接近的,设为L(eak)。 考虑在10分钟的运行时间内程序新申请到的内存A(lloc),这部分内存其实包含了程序运行正常申请,并会在后续运行中进行释放的普通内存块N(ormal)和泄漏的内存L,即: A = N + L 在后续的运行中,由于N部分不断的申请和释放,所以这部分的总量基本上是不变的,而L部分由于只申请而不释放,占用的内存总量将会越来越大。 将这个结果放到运行时间轴上,现在我们观察程序运行中的20分钟,我们假定内存泄漏为dL/10分钟,时间轴如下: ----------------|--------------------|-------------------|---------------------------- Tn-2 Tn-1 Tn 三点间隔均为10分钟,则我们有如下结论: Tn点总的内存分配量 An = N + dL * n,N为正常分配内存,dL*n为内存泄漏量的总和,而Tn-1点的内存总量则为 An-1 = N + dL*(n-1)。注意,我们这里不考虑释放的内存量,仅考虑增加的内存量。因此很明显单位时间内的内存泄漏量 dL = An - An-1。 生成内存Dump文件的代码实现 要完成如上的策略,我们首先需要能跟踪内存块的分配与释放情况,并且在运行时将分配情况保存到文件中,以便进行比较,所幸m $已经为我们提供了一整套手段,可以方便地进行内存追踪。具体实现步骤如下: 包含内存追踪所需库 在StdAfx.h中添加如下代码,注意必须定义宏_CRTDBG_MAP_ALLOC,否则后续dump文件将缺少内存块的代码位置。
启动内存追踪 上述步骤完成后,则可以在应用程序启动处添加如下代码,启动内存追踪,启动后程序将自动检测内存的分配与释放情况,并允许将结果输出。
将结果输出指向dump文件 由于默认情况下,内存泄漏的dump内容是输出到vs的debug输出窗口,但是对于服务类程序肯定没法开着vs的debug模式来追踪内存泄漏,所以必须将dump内容的输出转到dump文件中。在程序中添加如下部分:
保存内存Dump 完成了以上的设置,我们就可以在程序中添加如下代码,输出内存dump到指定的dump文件中:
以上代码最好放在一个函数中由定时器定期触发,或者手动snapshot生成相等时间段的内存dump。 dump文件内容示例如下:
上面红色部分即为用户代码中分配而未释放的内存块位置。 解析Dump文件 前面我们已经通过dump文件获取到各时刻点的内存dump,根据前面的分析策略,我们只需要将第n次dump的内存块分配情况An,与第n-1次dump内存块分配情况An-1作比较,即可定位到发生内存泄漏的位置。由于dump文件一般容量巨大,靠人工进行对比几乎不可能,所以仅介绍比较的思路,各位需要自行制作小工具进行处理。 1、提取两个相邻时间点的dump文件D1和D2,设D1是D2之前的dump 2、各自提取dump文件中用户代码分配的内存块(即有明确代码位置,而且为normal block的内存块),分别根据内存块ID(如“d:xxxxxxxxworker.cpp(903) : {20575705}”红色部分)保存在列表L1和L2 3、遍历列表L2,记录内存块ID没有在L1中出现过的内存块,这些内存块即为可能泄漏的内存 4、根据3的结果,按照内存的分配代码位置,统计各处代码泄漏的内存块个数,降序排列,分配次数越多的代码,内存泄漏可能性越大。 |