Chinaunix首页 | 论坛 | 博客
  • 博客访问: 103589792
  • 博文数量: 19283
  • 博客积分: 9968
  • 博客等级: 上将
  • 技术积分: 196062
  • 用 户 组: 普通用户
  • 注册时间: 2007-02-07 14:28
文章分类

全部博文(19283)

文章存档

2011年(1)

2009年(125)

2008年(19094)

2007年(63)

分类: C/C++

2008-05-18 18:05:39

 来源:


  【问题】 编写斐波那契(Fibonacci)数列的第n项函数fib(n)。

  斐波那契数列为:0、1、1、2、3、……,即:

以下是引用片段:
  fib(0)=0;
  fib(1)=1;
  fib(n)=fib(n-1)+fib(n-2) (当n>1时)。

  写成递归函数有:

以下是引用片段:
  int fib(int n)
  { if (n==0) return 0;
  if (n==1) return 1;
  if (n>1) return fib(n-1)+fib(n-2);
  }

  递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。

  在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。

  在编写递归函数时要注意,函数中的局部变量和参数局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。

  由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

  【问题】 组合问题

  问题描述:找出从数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1

  (4)5、3、2 (5)5、3、1 (6)5、2、1

  (7)4、3、2 (8)4、3、1 (9)4、2、1

  (10)3、2、1

  所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。

  【程序】

以下是引用片段:
  # include
  # define MAXN 100
  int a[MAXN];
  void comb(int m,int k)
  { int i,j;
  for (i=m;i>=k;i--)
  { a[k]=i;
  if (k>1)
  comb(i-1,k-1);
  else
  { for (j=a[0];j>0;j--)
  printf(“%4d”,a[j]);
  printf(“n”);
  }
  }
  }
  void main()
  { a[0]=3;
  comb(5,3);
  }

  【问题】 背包问题

  问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

  设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后的方案一定会比前面的方案。

  对于第i件物品的选择考虑有两种可能:

  (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。

  (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。

  按以上思想写出递归算法如下:

以下是引用片段:
  try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
  { /*考虑物品i包含在当前方案中的可能性*/
  if(包含物品i是可以接受的)
  { 将物品i包含在当前方案中;
  if (i
  try(i+1,tw+物品i的重量,tv);
  else
  /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/
  以当前方案作为临时最佳方案保存;
  恢复物品i不包含状态;
  }
  /*考虑物品i不包含在当前方案中的可能性*/
  if (不包含物品i仅是可男考虑的)
  if (i
  try(i+1,tw,tv-物品i的价值);
  else
  /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/
  以当前方案作为临时最佳方案保存;
  }

 

阅读(275) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~