Chinaunix首页 | 论坛 | 博客
  • 博客访问: 111017
  • 博文数量: 39
  • 博客积分: 2032
  • 博客等级: 大尉
  • 技术积分: 330
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-09 10:21
文章分类
文章存档

2011年(2)

2010年(22)

2009年(15)

我的朋友

分类: C/C++

2010-04-12 11:57:05

1    什么是卡尔曼滤波器

在学习卡尔曼滤波器之 前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

卡尔曼全名Rudolf Emil Kalman,匈 牙利数学家,1930年出生于匈牙利首都布达佩斯。19531954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源 于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:

简单来说,卡尔曼滤波 器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优, 效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理, 例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍

Introduction to the Kalman Filter

为了可以更加容易的理 解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单, 只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象 是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对 你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise), 也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量 值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分 钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的 实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一 点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出 现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波 器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的 时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨 论真正工程系统上的卡尔曼。

3    卡尔曼滤波器算法

The Kalman Filter Algorithm

在这一部分,我们就来 描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或 正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一 个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:

X(k)=A X(k-1)+B U(k)+W(k)

再加上系统的测量值:

Z(k)=H X(k)+V(k)

上两式子中,X(k)k时刻的系统状态,U(k)k时刻对系统的控制量。AB是系统参数,对于多模型系统,他们为矩阵。Z(k)k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是QR(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类 似上一节那个温度的例子)。

首先我们要利用系统的 过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0

到现在为止,我们的系 统结果已经更新了,可是,对应于X(k|k-1)covariance还没更新。我们用P表示covariance

P(k|k-1)=A P(k-1|k-1) A+Q ……… (2)

(2)中,P(k|k-1)X(k|k-1)对应的covarianceP(k-1|k-1)X(k-1|k-1)对应的covarianceA’表示A的转置矩阵,Q是系统过程的covariance。式子12就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态 的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k)

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

其中Kg为卡尔曼增益(Kalman Gain)

Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R) ……… (4)

到现在为止,我们已经 得到了k状态 下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)covariance

P(k|k)=I-Kg(k) HP(k|k-1) ……… (5)

其中I 1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基 本描述了,式子12345就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。
阅读(1835) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~