Chinaunix首页 | 论坛 | 博客
  • 博客访问: 111000
  • 博文数量: 39
  • 博客积分: 2032
  • 博客等级: 大尉
  • 技术积分: 330
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-09 10:21
文章分类
文章存档

2011年(2)

2010年(22)

2009年(15)

我的朋友

分类:

2009-11-26 13:49:20

谁主沉浮 OpenCL与CUDA架构深入解析

2009-1-8 作者: NVIDIA 来源: NVIDIA

关键字:   

  前言

   最近,Khronos公布了OpenCL(Open Computing Language)的第一个测试版本,一经发布便在通用计算领域掀起来轩然大波!OpenCL是由苹果公司发起,业界众多著名厂商共同制作的面向异构系统 通用目的并行编程的开放式、免费标准,也是一个统一的编程环境。便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景。

   那么OpenCL与NVIDIA的CUDA架构是什么关系,是否是外界认为的竞争关系?目前众多的通用计算标准中,比如NVIDIA的CUDA、 Khronos的OpenCL、AMD的Stream,CAL、Brook+、微软下一代的Computer shader等,他们之间有什么异同,看完这篇文章,相信你就会有一个大概的了解……

  OpenCL来了!

   Khronos是一个开发组织,著名的OpenGL就是出自Khronos之手,Khronos有很多厂商组成,OpenCL工作组同时也是 OpenCL的一个协调机构,来负责制定OpenCL的规格、架构等等各方面。业界最主要的和图形或者和计算相关的厂商都是Khronos的成员。

   OpenCL实际上是针对异构系统进行并行编程的一个全新的API,OpenCL可以利用GPU进行一些并行计算的工作。我们知道,图形里面有很多 API,比如OpenGL是针对图形的,而OpenCL则是针对并行计算的API。 OpenCL开发人员可以利用GPU和CPU的计算能力,把GPU和CPU异构的系统运用在很多并行计算的领域。

   OpenCL对于业界来说是非常重要也是非常好的一个标准,这样业界有一个共同的标准可以利用GPU的强大计算能力,然后应用在图形以外各种各样的并行 计算方面。NVIDIA公司的副总裁Neil Trevett是OpenCL工作组的主席,引导很多OpenCL的开发,NVIDIA公司很多员工都在参与这项工作。

  OpenCL 最早由Apple公司提出的,OpenCL发起NVIDIA就和Apple公司进行非常紧密的合作。OpenCL开发的过程中,技术平台均为NVIDIA 的GPU,实际上OpenCL是基于NVIDIA GPU的平台进行开发的。另外OpenCL在大概两个多月以前进行了第一次演示,也是运行在NVIDIA的GPU上。

   对于Apple公司来说是把GPU计算当成一种未来的趋势,他们非常重视OpenCL,在新一代的产品里面选择了最适合于OpenCL运行的平台。所以 新一代苹果的笔记本电脑全都采用了NVIDIA的平台,不管是MacBook Pro还是MaBook。实际上这也是从另外一个方面证明NVIDIA的GPU对于OpenCL的支持。

  OpenCL与CUDA并非敌对关系

   很多人对什么是CUDA可能还有一些疑虑,并没有搞清楚CUDA到底是什么。实际上CUDA最主要的包含两个方面:一个是ISA指令集架构;第二硬件计 算引擎;实际上是硬件和指令集。 也就是说我们可以把CUDA看做是与X86或者cell类似的架构,但是是基于是GPU,而不是传统的CPU。

   这个其实很好理解,把它和传统的和CPU的架构比较下相信就更容易理解,传统X86是包含一套指令集和执行X86各种各样的CPU,对于CUDA也是一 样,CUDA有一套指令集ISA,还有执行指令集各种各样的硬件引擎。CUDA到目前为止包含了一个C语言的编译器,当然CUDA架构还可以支持其他的 API,包括OpenCL或者DirectX,同时CUDA还会有其他的语言,包括Fortran、Java、Python等各种各样的语言,可以说 CUDA架构是原生的,专门为计算接口而建造的这样的一个架构,这种硬件架构包括指令集都是非常适合于这种并行计算,为异构计算而设计的一整套的架构。


OpenCL与CUDA的关系

   上图很好的解释CUDA和OpenCL的关系,他们并不是冲突关系,而是包容关系。OpenCL是一个API,在第一个级别,CUDA架构是更高一个级 别,在这个架构上不管是OpenCL还是DX11这样的API,还是像C语言、Fortran、DX11计算,都可以支持。作为程序开发员来讲,一般他们 只懂这些语言或者API,可以采用多种语言开发自己的程序,不管他选择什么语言,只要是希望调用GPU的计算能,在这个架构上都可以用CUDA来编程。

   CUDA编程的道理和CPU的编程很类似,比如有了X86的指令集,又有X86各种各样的CPU,那么我们只需要对这个指令集编程即可。X86架构上有 各种各样的开发工具,当然也有C语言,Fortran语言,Python语言,Java或者以前的Pascal语言,不论你使用什么语言进行开发,最后还 是在X86的架构上执行。CUDA也是一样,有了CUDA的指令集,有了支持CUDA的硬件,我们就可以采用不同的途径来进行开发,比如可以采用 OpenCL或者DirectX这样的API,也可以用C语言或者Fortran或者Java开发,最终都可以在CUDA架构上运行。



责任编辑:熊东旭
阅读(531) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~