|
这是一个经常遇到的经典问题,这里分两个部分讲解和总结,首先对讲解现有的算法,然后再讲解一些改进算法。
1.循环法(Iterated Count)
int bitcount (unsigned int n)
{
int count=0;
while (n) {
count += n & 0x1u ;
n >>= 1 ;
}
return count ;
}
最容易理解和想到的方法。对每一位依次判断是否为1,如果是就在count上加1。
循环的次数是常数(n的位数)。在1比较稀疏的时候效率低,可用方法2改进。
2.Bit1稀疏Sparse Ones
int bitcount (unsigned int n)
{
int count=0 ;
while (n) {
count++ ;
n &= (n - 1) ;
}
return count ;
}
理解这个算法的核心,只需理解2个操作:
1> 当一个数被减1时,他最右边的那个值为1的Bit将变为0,同时其右边的所有的Bit都会变成1。
2>“&=”,位与并赋值操作。去掉已经被计数过的1,并将改值重新设置给n.
这个算法循环的次数是bit位为一的个数。也就说有几个Bit为1,循环几次。对Bit为1比较稀疏的数来说,性能很好。如:0x1000 0000, 循环一次就可以。
3.密集1的算法 Dense Ones
int bitcount (unsigned int n)
{
int count = 8 * sizeof(int) ;
n ^= (unsigned int) -1 ;
while (n)
{
count-- ;
n &= (n - 1) ;
}
return count ;
}
与2稀疏1的算法相类似。不同点是,针对1密集的情况,循环的次数会大大减少。他的循环次数:sizeof(int)-Bit 1的个数。
4.8bit静态表查找法 Precompute_8bit
static int bits_in_char [256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
6, 7, 6, 7, 7, 8
};
int bitcount (unsigned int n)
{
// works only for 32-bit ints
return bits_in_char [n & 0xffu]
+ bits_in_char [(n >> 8) & 0xffu]
+ bits_in_char [(n >> 16) & 0xffu]
+ bits_in_char [(n >> 24) & 0xffu] ;
}
使用静态数组表,列出所有8bit(256个)无符号数含有Bit1的个数。将32Bit 的n分4部分,直接在表中找到对应的Bit1的个数,然后求和。
这是最快的方法了。缺点是需要比较大的内存。
5.16bit静态表查找法Precompute_16bit
因为在计算64位int时,以上方法4并不总是最快,所以有以下的一个进化版,就是用十六Bit的表来作驱动映射。这样需要的内存就更大了。
static char bits_in_16bits [0x1u << 16] …;
int bitcount (unsigned int n)
{
// works only for 32-bit ints
return bits_in_16bits [n & 0xffffu]
+ bits_in_16bits [(n >> 16) & 0xffffu] ;
}
6. 合并计数器法 Parallel Counter
unsigned numbits(unsigned int i)
{
unsigned int const MASK1 = 0x55555555;
unsigned int const MASK2 = 0x33333333;
unsigned int const MASK4 = 0x0f0f0f0f;
unsigned int const MASK8 = 0x00ff00ff;
unsigned int const MASK16 = 0x0000ffff;
/*
MASK1 = 01010101010101010101010101010101
MASK2 = 00110011001100110011001100110011
MASK4 = 00001111000011110000111100001111
MASK8 = 00000000111111110000000011111111
MASK16 = 00000000000000001111111111111111
*/
i = (i&MASK1 ) + (i>>1 &MASK1 );
i = (i&MASK2 ) + (i>>2 &MASK2 );
i = (i&MASK4 ) + (i>>4 &MASK4 );
i = (i&MASK8 ) + (i>>8 &MASK8 );
i = (i&MASK16) + (i>>16&MASK16);
return i;
}
这个算法是一种合并计数器的策略。把输入数的32Bit当作32个计数器,代表每一位的1个数。然后合并相邻的2个“计数器”,使i成为16个计数器,每
个计数器的值就是这2个Bit的1的个数;继续合并相邻的2个“计数器“,使i成为8个计数器,每个计数器的值就是4个Bit的1的个数。。依次类推,直
到将i变成一个计数器,那么它的值就是32Bit的i中值为1的Bit的个数。
举个例子,假设输入的i值为10010111011111010101101110101111(十进制2541575087)
计算过程如下:(共22个1)
1. 将32个计数器合并为16个,每一个计数器代表 2-bit 的1个数
1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 = 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1
+0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 = 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1
----------------------------------------------------------------------
1 1 1 2 1 2 2 1 1 1 1 2 1 1 2 2 = 01 01 01 10 01 10 10 01 01 01 01 10 01 01 10 10
2. 将16个计数器合并为8个,每一个计数器代表 4-bit 的1个数
1 1 1 2 1 1 1 2 = 01 01 01 10 01 01 01 10
+1 2 2 1 1 2 1 2 = 01 10 10 01 01 10 01 10
--------------- ---------------------------------------
2 3 3 3 2 3 2 4 = 0010 0011 0011 0011 0010 0011 0010 0100
3. 将8个计数器合并为4个,每一个计数器代表 8-bit 的1个数
3 3 3 4 = 0010 0011 0010 0010
+2 3 2 2 = 0011 0011 0011 0100
------- -----------------------------------
5 6 5 6 = 000
|
|