Chinaunix首页 | 论坛 | 博客
  • 博客访问: 563756
  • 博文数量: 109
  • 博客积分: 2300
  • 博客等级: 大尉
  • 技术积分: 810
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-02 13:11
文章分类

全部博文(109)

文章存档

2012年(1)

2011年(17)

2010年(62)

2009年(29)

我的朋友

分类:

2011-11-17 21:50:53

ETHERNET的接口实质是MAC通过MII总线控制PHY的过程。

MAC是Media Access Control 的缩写,即媒体访问控制子层协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层。以太网MAC由IEEE-802.3以太网标准定义。

MII(Media Independent Interface)即媒体独立接口, “媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号,包括TX_ER,TXD<3:0>,TX_EN,TX_CLK,COL,RXD<3:0>,RX_EX,RX_CLK,CRS,RX_DV等。

MII以4位半字节方式传送数据双向传输,时钟速率25MHz。其工作速率可达100Mb/s。MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的。PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。

Ethernet Interface=MAC+PHY with MII

PHY是物理接口收发器,它实现物理层。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。

100BaseTX采用4B/5B编码。PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。

PHY还有个重要的功能就是实现CSMA/CD的部分功能。它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两个碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据。这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突。

通信速率通过双方协商,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式。这个技术被称为Auto Negotiation或者NWAY。

隔离变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。RJ-45中1、2是传送数据的,3、6是接收数据的。新的PHY支持AUTO MDI-X功能(也需要隔离变压器支持)。它可以实现RJ-45接口的1、2上的传送信号线和3、6上的接收信号线的功能自动互相交换。

)。它可以实现RJ-45接口的1、2上的传送信号线和3、6上的接收信号线的功能自动互相交换。

DM9000原理

DM9000 是Davicom公司的一款以太网控制芯片,在网络中它可自动获得同设定MAC地址一致的IP包,完成IP包的收发,再用一个单片机来结合完成上层协议,就构成了一个完整的网络终端。在单片机中嵌入了一个精简TCP/IP协议栈。

API 总共分7部分,包括网络接口层、动态内存管理模块、缓冲区管理模块、UDP层、TCP层、DHCP模块和DNS模块。

协议栈本身需求ROM空间为21KWord。

(1)内存工作原理DM9000 共有6 K Byte(0000h-3FFFh)内存,而读写内存由MWCMD、MRCMD这两个寄存器来控制。MWRL,MWRH 寄存器提供现在写入内存的位置,MRRL,MRRH 寄存器提供现在读取内存的位置。内存移动工作模式为每次移动1 个Byte(8 bit)或2个Byte(16 bit)。

(2)封包传送工作原理内存中默认值有3 KByte (0000h-0BFFh)提供给传送功能使用。而传送一个封包流程如下:①将要传送封包的长度,填入到TXPLL,TXPLH寄存器;② 将要传送封包的资料由MWCMD 寄存器填入内存中;③由TCR寄存器使DM9000 送出封包资料;④若内存的写入位置超过0BFFh 时,自动将下一个位置回复到0000h。

(3)封包接收工作原理内存中默认值有13K Byte( 0C00h-03FFh)提供给接收功能使用。在每一个封包,会有4个Byte存放一些封包相关资料。第1 个Byte 是封包是否已存放在接收内存,若值为“01h”为封包已存放于接收内存,若为“00h”则接收内存尚未有封包存放。在读取其它Byte之前,必需要确定第1 个byte 是否为“01h”。第2 个Byte 则为这个封包的一些相关讯息,它的格式像RSR寄存器的格式。第3和4个Byte是存放这个封包的长度大小。

接一个封包的流程如下:

①检查MRCMDX寄存器值是否为01,若是则有封包进入需读取;

②读取MRCMD,将前4 个Byte封包讯息读入;

③由前4 个Byte封包讯息取到待得封包长度(以Byte 为单位),连续读取MRCMD,将封包资料移到系统内存之中;

④若读取位置超过3FFFh 时,自动会移到0C00h。

转载自:http://blog.sina.com.cn/s/blog_522a41b201009ha7.html

关于以太网的MAC和PHY
2007-12-05 16:41
问:如何实现单片微控制器?

答:诀窍是将微控制器、以太网媒体接入控制器()和物理接口收发器()整合进同一芯片,这样能去掉许多外接元器件。这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。

问:以太网MAC是什么?

答:MAC就是媒体接入控制器。以太网MAC由IEEE-802.3以太网标准定义。它实现了一个数据链路层。最新的MAC同时支持10Mbps和100Mbps两种速率。通常情况下,它实现MII接口。

问:什么是MII?

答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。 数据接口包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号。管理接口是个双信号接 口:一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。

问:以太网PHY是什么?

答:PHY是物理接口收发器,它实现物理层。IEEE-802.3标准定义了以太网PHY。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

 

问:造成以太网MAC和PHY单片整合难度高的原因是什么?

答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。

问: 除RJ-45接口外,还需要其它元件吗?

答:需要其它元件。虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。绝缘模块一般采用一个1:1的变压器。这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。

问:10BaseT和100BaseTX PHY实现方式不同的原因何在?

答:两种实现的分组描述本质上是一样的,但两者的信令机制完全不同。其目的是阻止一种硬件实现容易地处理两种速度。10BaseT采用曼彻斯特编码,100BaseTX采用4B/5B编码。

问:什么是曼彻斯特编码?

答:曼彻斯特编码又称曼彻斯特相位编码,它通过相位变化来实现每个位(图2)。通常,用一个时钟周期中部的上升沿表示“1”,下降沿表示“0”。周期末端的相位变化可忽略不计,但有时又可能需要将这种相位变化计算在内,这取决于前一位的值。

以太网设计FAQ:以太网MAC和PHY

问:什么是4B/5B编码?

答:4B/5B编码是一种块编码方式。它将一个4位的块编码成一个5位的块。这就使5位块内永远至少包含2个“1”转换,所以在一个5位块内总能进行时钟同步。该方法需要25%的额外开销。

网卡的MAC和PHY

网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数 据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等 功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接 phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。


PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。


来自:http://lagignition.blog.163.com/blog/static/1287300232011027112429784/


阅读(3893) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~