分类: 嵌入式
2010-10-16 23:43:57
在Bootloader将 Linux 内核映像拷贝到 RAM 以后,可以通过下例代码启动 Linux 内核:
call_linux(0, machine_type, kernel_params_base)。
其中,machine_tpye 是Bootloader检测出来的处理器类型, kernel_params_base 是启动参数在 RAM 的地址。通过这种方式将 Linux 启动需要的参数从 bootloader传递到内核。
Linux 内核有两种映像:一种是非压缩内核,叫 Image,另一种是它的压缩版本,叫 zImage。根据内核映像的不同,Linux 内核的启动在开始阶段也有所不同。zImage 是 Image经过压缩形成的,所以它的大小比 Image 小。但为了能使用 zImage,必须在它的开头加上解压缩的代码,将 zImage 解压缩之后才能执行,因此它的执行速度比 Image 要慢。但考虑到嵌入式系统的存储空容量一般比较小,采用 zImage 可以占用较少的存储空间,因此牺牲一点性能上的代价也是值得的。所以一般的嵌入式系统均采用压缩内核的方式。
对于ARM 系列处理器来说,zImage 的入口程序即为 arch/arm/boot/compressed/head.S。它依次完成以下工作:开启 MMU 和 Cache,调用 decompress_kernel()解压内核,最后通过调用 call_kernel()进入非压缩内核 Image 的启动。下面将具体分析在此之后 Linux 内核的启动过程。
1、 Linux内核入口
Linux 非压缩内核的入口位于文件/arch/arm/kernel/head-armv.S 中的stext 段。该段的基地址就是压缩内核解压后的跳转地址。如果系统中加载的内核是非压缩的 Image,那么bootloader将内核从 Flash中拷贝到 RAM 后将直接跳到该地址处,从而启动 Linux 内核。不同体系结构的 Linux 系统的入口文件是不同的,而且因为该文件与具体体系结构有关,所以一般均用汇编语言编写。对基于 ARM 处理的 Linux 系统来说,该文件就是head-armv.S。该程序通过查找处理器内核类型和处理器类型调用相应的初始化函数,再建立页表,最后跳转到 start_kernel()函数开始内核的初始化工作。检测处理器内核类型是在汇编子函数__lookup_processor_type中完成的。通过以下代码可实现对它的调用:
bl __lookup_processor_type。
__lookup_processor_type调用结束返回原程序时,会将返回结果保存到寄存器中。其中r8 保存了页表的标志位,r9 保存了处理器的 ID 号,r10 保存了与处理器相关的 stru proc_info_list 结构地址。
检测处理器类型是在汇编子函数 __lookup_architecture_type 中完成的。与 __lookup_processor_type类似,它通过代码:“bl __lookup_processor_type”来实现对它的调用。该函数返回时,会将返回结构保存在 r5、r6 和 r7 三个寄存器中。其中 r5 保存了 RAM 的起始基地址,r6 保存了 I/O基地址,r7 保存了 I/O的页表偏移地址。当检测处理器内核和处理器类型结束后,将调用__create_page_tables 子函数来建立页表,它所要做的工作就是将 RAM 基地址开始的 4M 空间的物理地址映射到 0xC0000000 开始的虚拟地址处。对笔者的 S3C2410 开发板而言,RAM 连接到物理地址 0x30000000 处,当调用 __create_page_tables 结束后 0x30000000 ~ 0x30400000 物理地址将映射到 0xC0000000~0xC0400000 虚拟地址处。当所有的初始化结束之后,使用如下代码来跳到 C 程序的入口函数 start_kernel()处,开始之后的内核初始化工作:b SYMBOL_NAME(start_kernel)
2 、start_kernel函数
start_kernel是所有 Linux 平台进入系统内核初始化后的入口函数,它主要完成剩余的与硬件平台相关的初始化工作,在进行一系列与内核相关的初始化后,调用第一个用户进程-init 进程并等待用户进程的执行,这样整个 Linux 内核便启动完毕。该函数所做的具体工作有:调用 setup_arch()函数进行与体系结构相关的第一个初始化工作;对不同的体系结构来说该函数有不同的定义。对于 ARM 平台而言,该函数定义在arch/arm/kernel/Setup.c。它首先通过检测出来的处理器类型进行处理器内核的初始化,然后通过 bootmem_init()函数根据系统定义的 meminfo 结构进行内存结构的初始化,最后调用paging_init()开启 MMU,创建内核页表,映射所有的物理内存和 IO空间。创建异常向量表和初始化中断处理函数;初始化系统核心进程调度器和时钟中断处理机制;初始化串口控制台(serial-console);ARM-Linux 在初始化过程中一般都会初始化一个串口做为内核的控制台,这样内核在启动过程中就可以通过串口输出信息以便开发者或用户了解系统的启动进程。创建和初始化系统 cache,为各种内存调用机制提供缓存,包括;动态内存分配,虚拟文件系统(VirtualFile System)及页缓存。初始化内存管理,检测内存大小及被内核占用的内存情况;初始化系统的进程间通信机制(IPC);当以上所有的初始化工作结束后,start_kernel()函数会调用 rest_init()函数来进行最后的初始化,包括创建系统的第一个进程-init 进程来结束内核的启动。init 进程首先进行一系列的硬件初始化,然后通过命令行传递过来的参数挂载根文件系统。最后 init 进程会执行用户传递过来的“init=”启动参数执行用户指定的命令,或者执行以下几个进程之一:
execve("/sbin/init",argv_init,envp_init) execve("/etc/init",argv_init,envp_init) execve("/bin/init",argv_init,envp_init) execve("/bin/sh",argv_init,envp_init) |
当所有的初始化工作结束后,cpu_idle()函数会被调用来使系统处于闲置(idle)状态并等待用户程序的执行。至此,整个 Linux 内核启动完毕。
Linux 内核是一个非常庞大的工程,经过十多年的发展,它已从从最初的几百 KB 大小发展到现在的几百兆。清晰的了解它执行的每一个过程是件非常困难的事。但是在嵌入式开发过程中,我们并不需要十分清楚Linux 的内部工作机制,只要适当修改Linux 内核中那些与硬件相关的部分,就可以将Linux 移植到其它目标平台上。通过对Linux 的启动过程的分析,我们可以看出哪些是和硬件相关的,哪些是Linux 内核内部已实现的功能,这样在移植Linux 的过程中便有所针对。而Linux内核的分层设计将使Linux 的移植变得更加容易。