Chinaunix首页 | 论坛 | 博客
  • 博客访问: 278325
  • 博文数量: 91
  • 博客积分: 2105
  • 博客等级: 大尉
  • 技术积分: 1050
  • 用 户 组: 普通用户
  • 注册时间: 2009-09-14 19:30
文章分类
文章存档

2011年(11)

2010年(64)

2009年(16)

我的朋友

分类: LINUX

2010-10-13 09:55:38

\kernel\arch\arm\boot\compressed\ head.S分析(2)

__armv7_mmu_cache_on:

         mov r12, lr //注意,这里需要手工保存返回地址!!这样做的原因是下面的bl指令会覆盖掉原来的lr,为保证程序正确返回,需要保存原来lr的值

              bl     __setup_mmu

              mov r0, #0

              mcr p15, 0, r0, c7, c10, 4     @ drain write buffer

              mcr p15, 0, r0, c8, c7, 0      @ flush I,D TLBs

              mrc p15, 0, r0, c1, c0, 0      @ read control reg

              orr   r0, r0, #0x5000             @ I-cache enable, RR cache replacement

              orr   r0, r0, #0x0030   

              bl     __common_mmu_cache_on

              mov r0, #0

              mcr p15, 0, r0, c8, c7, 0      @ flush I,D TLBs

              mov pc, r12  //返回到cache_on

这个函数首先执行__setup_mmu,然后清空write bufferI/DcacheTLB.接着打开i-cache,设置为Round-robin replacement。调用__common_mmu_cache_on,打开mmud-cache.把页表基地址和域访问控制写入协处理器寄存器c2c3. __common_mmu_cache_on函数数定义如下:

__common_mmu_cache_on:

#ifndef DEBUG

              orr   r0, r0, #0x000d             @ Write buffer, mmu

#endif

              mov r1, #-1 //-1的补码是ffff ffff,

              mcr p15, 0, r3, c2, c0, 0      @ 把页表地址存于协处理器寄存器中

              mcr p15, 0, r1, c3, c0, 0   @设置domain access control寄存 

              b     1f                                

              .align       5                   @ cache line aligned

1:            mcr p15, 0, r0, c1, c0, 0      @ load control register

              mrc p15, 0, r0, c1, c0, 0      @ and read it back to

              sub  pc, lr, r0, lsr #32    @ properly flush pipeline

 

重点来看一下__setup_mmu这个函数,定义如下:

 

__setup_mmu:       sub  r3, r4, #16384        @ Page directory size

              bic   r3, r3, #0xff          @ Align the pointer

              bic   r3, r3, #0x3f00

这里r4中存放着内核执行地址,将16K的一级页表放在这个内核执行地址下面的16K空间里,上面通过 sub  r3, r4, #16384  获得16K空间后,又将页表的起始地址进行16K对齐放在r3中。即ttb的低14位清零。

 

//初始化页表,并在RAM空间里打开cacheable bufferable

              mov r0, r3

              mov r9, r0, lsr #18

              mov r9, r9, lsl #18         @ start of RAM

              add  r10, r9, #0x10000000    @ a reasonable RAM size

 

上面这几行把一级页表的起始地址保存在r0中,并通过r0获得一个ram起始地址(每个页面大小为1M)然后映射256M ram空间,并把对应的描述符的CB位均置”1   

              mov r1, #0x12 //一级描述符的bit[1:0]10,表示这是一个section描述符。也即分页方式为段式分页 

              orr   r1, r1, #3 << 10 //一级描述符的access permission bits bit[11:10]11. 

 

              add  r2, r3, #16384  //一级描述符表的结束地址存放在r2中。

 

 

1:            cmp r1, r9                    @ if virt > start of RAM

              orrhs       r1, r1, #0x0c         @ set cacheable, bufferable

              cmp r1, r10                  @ if virt > end of RAM

              bichs       r1, r1, #0x0c         @ clear cacheable, bufferable

              str   r1, [r0], #4            @ 1:1 mapping

              add  r1, r1, #1048576//下个1M物理空间,每个页框1M

              teq   r0, r2

              bne  1b

 

因为打开cache前必须打开mmu,所以这里先对页表进行初始化,然后打开mmucache

上面这段就是对一级描述符表(页表)的初始化,首先比较这个描述符所描述的地址是否在那个256M的空间中,如果在则这个描述符对应的内存区域是cacheable ,bufferable。如果不在则noncacheable, nonbufferable.然后将描述符写入一个一级描述符表的入口,并将一级描述符表入口地址加4,而指向下一个1M section的基地址。如果页表入口未初始化完,则继续初始化。

 

页表大小为16K,每个描述符4字节,刚好可以容纳4096个描述符,每个描述符映射1M     ,那么4096*所以这里就映射了4096*1M = 4G的空间。因此16K的页完全可以把256M地址空间全部 映射

 

              mov r1, #0x1e

              orr   r1, r1, #3 << 10 //这两行将描述的bit[11:10] bit[4:1]置位,

//具体置位的原因,在ARM11的页表项描述符里有说明,由于没找到完整的文档,这里只给出图示:

 

 

              mov r2, pc, lsr #20

              orr   r1, r1, r2, lsl #20  //将当前地址进1M对齐,并与r1中的内容结合形成一个描述当前指令所在section的描述符。

 

              add  r0, r3, r2, lsl #2   //r3为刚才建立的一级描述符表的起始地址。通过将当前地

//(pc)的高12位左移两位(形成14位索引)r3中的地址

                            // (14位为0)相加形成一个4字节对齐的地址,这个

                            //地址也在16K的一级描述符表内。当前地址对应的

                            //描述符在一级页表中的位置

                          

              str   r1, [r0], #4

              add  r1, r1, #1048576

              str   r1, [r0]          //这里将上面形成的描述符及其连续的下一个section描述

//写入上面4字节对齐地址处(一级页表中索引为r2左移

//2位)

 

              mov pc, lr       //返回,调用此函数时,调用指令的下一语句mov   r0, #0的地 址保存在lr

                      

 

这里进行的是一致性的映射,物理地址和虚拟地址是一样。

 

__common_mmu_cache_on最后执行mov pc, r12返回cache_on,为何返回到的是cache_on呢?这就是上面解释保存lr的原因,因为原来的lr保存了 执行

bl     cache_on语句的下条指令,因此能正确返回!

下一条指令也即是下面开始

              mov r1, sp                    @栈空间大小是4096字节,那//么在栈空间地址上面再分配64K字节空间

              add  r2, sp, #0x10000    @ 分配64k字节。

  栈的分配如下:

       .align

              .section ".stack", "w"

user_stack:    .space    4096//lc0SP进行了定义   .word     user_stack+4096  @ sp

由此可见sp是往下增长的

分配了解压缩用的缓冲区,那么接下来就判断这个数据区是否和我们目前运行的代码空间重叠,如果重叠则需调整

/*

 * Check to see if we will overwrite ourselves.

 *   r4 = final kernel address

 *   r5 = start of this image

 *   r2 = end of malloc space (and therefore this image)

 * We basically want:

 *   r4 >= r2 -> OK

 *   r4 + image length <= r5 -> OK

 */

              cmp r4, r2

              bhs  wont_overwrite

              sub  r3, sp, r5        @ > compressed kernel size

              add  r0, r4, r3, lsl #2      @ allow for 4x expansion

              cmp r0, r5

              bls   wont_overwrite

 

缓冲区空间的起始地址和结束地址分别存放在r1r2中。然后判断最终内核地址,也就是解压后内核的起始地址,是否大于malloc空间的结束地址,如果大于就跳到wont_overwrite执行,wont_overwrite函数后面会讲到。否则,检查最终内核地址加解压后内核大小,也就是解压后内核的结束地址,是否小于现在未解压内核映像的起始地址。小于也会跳到wont_owerwrite执行。如两这两个条件都不满足,则继续往下执行。

 

              mov r5, r2                    @ decompress after malloc space

              mov r0, r5

              mov r3, r7

              bl     decompress_kernel

 

这里将解压后内核的起始地址设为malloc空间的结束地址。然后后把处理器id(开始时保存在r7中)保存到r3中,调用decompress_kernel开始解压内核。这个函数的四个参数分别存放在r0-r3中,它在arch/arm/boot/compressed/misc.c中定义。 解压的过程为先把解压代码放到缓冲区,然后从缓冲区在拷贝到最终执行空间。

 

              add  r0, r0, #127

              bic   r0, r0, #127           @ align the kernel length

/*

 * r0     = decompressed kernel length

 * r1-r3  = unused

 * r4     = kernel execution address

 * r5     = decompressed kernel start

 * r6     = processor ID

 * r7     = architecture ID

 * r8     = atags pointer

 * r9-r14 = corrupted

 */

              add  r1, r5, r0        @ end of decompressed kernel

              adr   r2, reloc_start

              ldr   r3, LC1

              add  r3, r2, r3

1:            ldmia       r2!, {r9 - r14}              @ copy relocation code

              stmia       r1!, {r9 - r14}

              ldmia       r2!, {r9 - r14}

              stmia       r1!, {r9 - r14}

              cmp r2, r3

              blo   1b

这里首先计算出重定位段,也即reloc_start段,然后对它的进行重定位

 

              bl     cache_clean_flush

              add  pc, r5, r0        @ call relocation code

重定位结束后跳到解压后执行 b       call_kernel不再返回。call_kernel定义如下:

 

call_kernel:   

bl    cache_clean_flush

              bl    cache_off

              mov r0, #0                   @ must be zero

              mov r1, r7                    @ restore architecture number

              mov r2, r8                    @ restore atags pointer

              mov pc, r4                   @ call kernel

在运行解压后内核之前,先调用了

cache_clean_flush这个函数。这个函数的定义如下

 

cache_clean_flush:

              mov r3, #16

              b     call_cache_fn

其实这里又调用了call_cache_fn这个函数,注意,这里r3的值为16,上面对cache操作已经比较详细,不再讨论。

刷新cache后,则执行mov   pc, r4跳入内核,开始进行下个阶段的处理。

 

 

整个代码流程如下:

阅读(632) | 评论(2) | 转发(0) |
0

上一篇:Linux启动(1)

下一篇:Linux启动(3)

给主人留下些什么吧!~~

chinaunix网友2011-04-13 16:28:33

学习了,多谢楼主分享哦!也欢迎广大linux爱好者来我的论坛一起讨论arm哦!www.lt-net.cn

chinaunix网友2010-10-13 20:26:53

很好的, 收藏了 推荐一个博客,提供很多免费软件编程电子书下载: http://free-ebooks.appspot.com