Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1804226
  • 博文数量: 335
  • 博客积分: 4690
  • 博客等级: 上校
  • 技术积分: 4341
  • 用 户 组: 普通用户
  • 注册时间: 2010-05-08 21:38
个人简介

无聊之人--除了技术,还是技术,你懂得

文章分类

全部博文(335)

文章存档

2016年(29)

2015年(18)

2014年(7)

2013年(86)

2012年(90)

2011年(105)

分类: Python/Ruby

2011-07-04 22:33:20

5.5. Exploring UserDict: A Wrapper Class

5.5 探索UserDict—一个包装类

As you've seen, FileInfo is a class that acts like a dictionary. To explore this further, let's look at the UserDict class in the UserDict module, which is the ancestor of the FileInfoclass. This is nothing special; the class is written in Python and stored in a .py file, just like any other Python code. In particular, it's stored in the lib directory in your Pythoninstallation.

正如先前看到的,FileInfo是一个同字典相类似的类。为了更深一步研究,我们看看模块UserDict模块中UserDict方法,即FileInfo类的祖先。这个类没有什么特别的,同其Python代码一样,该类用Python写成,存储在一个扩展名为py的文件中。它存储在Python安装目录中的lib目录。

Tip

 

In the ActivePython IDE on Windows, you can quickly open any module in your library path by selecting File->Locate... (Ctrl-L).

window平台上的ActivePython IDE中,你可以很快的打开你的类库路径任意模块,通过File->Locate(ctrl+L).

 

Example 5.9. Defining the UserDict Class

5.9 定义UserDict

class UserDict:                                1

    def __init__(self, dict=None):             2

        self.data = {}                         3

        if dict is not None: self.update(dict) 4  5

1

Note that UserDict is a base class, not inherited from any other class.

注意UserDict是一个基类,它不从任何类继承。

 

 

2

This is the __init__ method that you overrode in the FileInfo class. Note that the argument list in this ancestor class is different than the descendant. That's okay; each subclass can have its own set of arguments, as long as it calls the ancestor with the correct arguments. Here the ancestor class has a way to define initial values (by passing a dictionary in the dict argument) which the FileInfo does not use.

这是你在FileInfo类中重写的__init__方法。注意祖先类中参数列表同后代类中是不同的。没有问题:每一个子类都包含了自己的参数集,只要在调用祖先类的时候使用正确的参数。此处祖先类使用了自己的方式定义初始值(通过传递给字典在dict参数),Fileinfo类中并没有使用。

 

 

3

Python supports data attributes (called “instance variables” in Java and Powerbuilder, and “member variables” in C++). Data attributes are pieces of data held by a specific instance of a class. In this case, each instance of UserDict will have a data attribute data. To reference this attribute from code outside the class, you qualify it with the instance name, instance.data, in the same way that you qualify a function with its module name. To reference a data attribute from within the class, you useself as the qualifier. By convention, all data attributes are initialized to reasonable values in the __init__ method. However, this is not required, since data attributes, like local variables, spring into existence when they are first assigned a value.

Python支持data属性(在javaPowerbuilder通常被称为实例变量,在c++中被称为成员变量)data属性持有少量数据,通常被特定的实例所确定。在本例中,每一个UserDict实例都将拥有一个data属性data。为了在类外引用该属性,你必须是使用实例名阿里限定该对象,instance.data,就如同你使用模块名称来限定函数名称的一样。在类内部引用数据属性你使用self作为限定符。惯例上,所有的数据属性都应该在__init__方法中用合适的值被初始化。然而这不是必须的,因为数据属性,同局部变量一样,当它们第一被赋值的时候在自动生成。

 

 

4

The update method is a dictionary duplicator: it copies all the keys and values from one dictionary to another. This does not clear the target dictionary first; if the target dictionary already has some keys, the ones from the source dictionary will be overwritten, but others will be left untouched. Think of update as a merge function, not a copy function.

Update方法是字典复制器:它拷贝所有的键值对从一个字典到另一个字典。在复制之前并不首先清除字典;如果目的字典先前含有某些键值,source字典将覆盖掉目的字典的键值,而其它的则不被改变。可以将update函数是做一个合并函数,而不复制函数。

 

 

5

This is a syntax you may not have seen before (I haven't used it in the examples in this book). It's an if statement, but instead of having an indented block starting on the next line, there is just a single statement on the same line, after the colon. This is perfectly legal syntax, which is just a shortcut you can use when you have only one statement in a block. (It's like specifying a single statement without braces in C++.) You can use this syntax, or you can have indented code on subsequent lines, but you can't do both for the same block.

 

 

 

Note

 

 

Java and Powerbuilder support function overloading by argument list, i.e. one class can have multiple methods with the same name but a different number of arguments, or arguments of different types. Other languages (most notably PL/SQL) even support function overloading by argument name; i.e. one class can have multiple methods with the same name and the same number of arguments of the same type but different argument names. Python supports neither of these; it has no form of function overloading whatsoever. Methods are defined solely by their name, and there can be only one method per class with a given name. So if a descendant class has an __init__ method, it always overrides the ancestor __init__ method, even if the descendant defines it with a different argument list. And the same rule applies to any other method.

 

 

 

Note

 

Guido, the original author of Python, explains method overriding this way: "Derived classes may override methods of their base classes. Because methods have no special privileges when calling other methods of the same object, a method of a base class that calls another method defined in the same base class, may in fact end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)" If that doesn't make sense to you (it confuses the hell out of me), feel free to ignore it. I just thought I'd pass it along.

 

 

Caution

 

Always assign an initial value to all of an instance's data attributes in the __init__ method. It will save you hours of debugging later, tracking down AttributeErrorexceptions because you're referencing uninitialized (and therefore non-existent) attributes.

 

Example 5.10. UserDict Normal Methods

    def clear(self): self.data.clear()          1

    def copy(self):                             2

        if self.__class__ is UserDict:          3

            return UserDict(self.data)        

        import copy                             4

        return copy.copy(self)                

    def keys(self): return self.data.keys()     5

    def items(self): return self.data.items() 

    def values(self): return self.data.values()

1

clear is a normal class method; it is publicly available to be called by anyone at any time. Notice that clear, like all class methods, has self as its first argument. (Remember that you don't include self when you call the method; it's something that Python adds for you.) Also note the basic technique of this wrapper class: store a real dictionary (data) as a data attribute, define all the methods that a real dictionary has, and have each class method redirect to the corresponding method on the real dictionary. (In case you'd forgotten, a dictionary's clear method deletes all of its keys and their associated values.)

 

 

2

The copy method of a real dictionary returns a new dictionary that is an exact duplicate of the original (all the same key-value pairs). But UserDict can't simply redirect toself.data.copy, because that method returns a real dictionary, and what you want is to return a new instance that is the same class as self.

 

 

3

You use the __class__ attribute to see if self is a UserDict; if so, you're golden, because you know how to copy a UserDict: just create a new UserDict and give it the real dictionary that you've squirreled away in self.data. Then you immediately return the new UserDict you don't even get to the import copy on the next line.

 

 

4

If self.__class__ is not UserDict, then self must be some subclass of UserDict (like maybe FileInfo), in which case life gets trickier. UserDict doesn't know how to make an exact copy of one of its descendants; there could, for instance, be other data attributes defined in the subclass, so you would need to iterate through them and make sure to copy all of them. Luckily, Python comes with a module to do exactly this, and it's called copy. I won't go into the details here (though it's a wicked cool module, if you're ever inclined to dive into it on your own). Suffice it to say that copy can copy arbitrary Python objects, and that's how you're using it here.

 

 

5

The rest of the methods are straightforward, redirecting the calls to the built-in methods on self.data.

 

 

 

Note

 

 

In versions of Python prior to 2.2, you could not directly subclass built-in datatypes like strings, lists, and dictionaries. To compensate for this, Python comes with wrapper classes that mimic the behavior of these built-in datatypes: UserString, UserList, and UserDict. Using a combination of normal and special methods, the UserDict class does an excellent imitation of a dictionary. In Python 2.2 and later, you can inherit classes directly from built-in datatypes like dict. An example of this is given in the examples that come with this book, in fileinfo_fromdict.py.

 

 

In Python, you can inherit directly from the dict built-in datatype, as shown in this example. There are three differences here compared to the UserDict version.

Example 5.11. Inheriting Directly from Built-In Datatype dict

 

class FileInfo(dict):                  1

    "store file metadata"

    def __init__(self, filename=None): 2

        self["name"] = filename

1

The first difference is that you don't need to import the UserDict module, since dict is a built-in datatype and is always available. The second is that you are inheriting from dict directly, instead of from UserDict.UserDict.

2

The third difference is subtle but important. Because of the way UserDict works internally, it requires you to manually call its __init__ method to properly initialize its internal data structures. dict does not work like this; it is not a wrapper, and it requires no explicit initialization.

 

阅读(1387) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~