Chinaunix首页 | 论坛 | 博客
  • 博客访问: 838081
  • 博文数量: 167
  • 博客积分: 7173
  • 博客等级: 少将
  • 技术积分: 1671
  • 用 户 组: 普通用户
  • 注册时间: 2009-08-04 23:07
文章分类

全部博文(167)

文章存档

2018年(1)

2017年(11)

2012年(2)

2011年(27)

2010年(88)

2009年(38)

分类: Mysql/postgreSQL

2010-07-12 11:17:22

20.3.6 恢复和复制的需要,对InnoDB锁机制的影响

MySQL通过BINLOG录执行成功的INSERT、UPDATE、DELETE等更新数据的SQL语句,并由此实现MySQL数据库的恢复和主 从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在Slave Mysql不断做基于BINLOG的恢复)有以下特点。

·一是MySQL的恢复是SQL语句级的,也就是重新执行BINLOG中的SQL语句。这与Oracle数据库不同,Oracle是基于数据库文件 块的。

·二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更 新号(System Change Number,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。

从上面两点可知,MySQL的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读,这已经超 过了ISO/ANSI SQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无 论在Read Commited或是Repeatable Read隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。

另外,对于“insert  into target_tab select * from source_tab where ...”和“create  table new_tab ...select ... From  source_tab where ...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如表 20-14的例子。

表20-14    CTAS操作给原表加锁例子

 

session_1

session_2

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql> select * from target_tab;

Empty set (0.00 sec)

 

mysql> select * from source_tab where name = '1';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 1    |  1 |

|  5 | 1    |  1 |

|  6 | 1    |  1 |

|  7 | 1    |  1 |

|  8 | 1    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql> select * from target_tab;

Empty set (0.00 sec)

 

mysql> select * from source_tab where name = '1';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 1    |  1 |

|  5 | 1    |  1 |

|  6 | 1    |  1 |

|  7 | 1    |  1 |

|  8 | 1    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

 

mysql> insert into target_tab select d1,name from source_tab where name = '1';

Query OK, 5 rows affected (0.00 sec)

Records: 5  Duplicates: 0  Warnings: 0

 

 

 

 

 

 

 

 

mysql> update source_tab set name = '1' where name = '8';

等待

commit;

 

 

 

返回结果

commit;

在上面的例子中,只是简单地读source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以 了。ORACLE正是这么做的,它通过MVCC技术实现的多版本数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现 了多版本数据,对普通的SELECT一致性读,也不需要加任何锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读 技术!

MySQL为什么要这么做呢?其原因还是为了保证恢复和复制的正确性。因为不加锁的话,如果在上述语句执行过程中,其他 事务对source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行 事务前,先将系统变量innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如表20-15所 示。

表20-15            CTAS操作不给原表加锁带来的安全问题例子

 

session_1

 

session_2

 

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql>set innodb_locks_unsafe_for_binlog='on'

Query OK, 0 rows affected (0.00 sec)

mysql> select * from target_tab;

Empty set (0.00 sec)

 

mysql> select * from source_tab where name = '1';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 1    |  1 |

|  5 | 1    |  1 |

|  6 | 1    |  1 |

|  7 | 1    |  1 |

|  8 | 1    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql> select * from target_tab;

Empty set (0.00 sec)

 

mysql> select * from source_tab where name = '1';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 1    |  1 |

|  5 | 1    |  1 |

|  6 | 1    |  1 |

|  7 | 1    |  1 |

|  8 | 1    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

 

mysql> insert into target_tab select d1,name from source_tab where name = '1';

Query OK, 5 rows affected (0.00 sec)

Records: 5  Duplicates: 0  Warnings: 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

session_1未提交,可以对session_1select的记录进行更新操作。

mysql> update source_tab set name = '8' where name = '1';

Query OK, 5 rows affected (0.00 sec)

Rows matched: 5  Changed: 5  Warnings: 0

 

mysql> select * from source_tab where name = '8';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 8    |  1 |

|  5 | 8    |  1 |

|  6 | 8    |  1 |

|  7 | 8    |  1 |

|  8 | 8    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

 

 

 

更新操作先提交

mysql> commit;

Query OK, 0 rows affected (0.05 sec)

插入操作后提交

mysql> commit;

Query OK, 0 rows affected (0.07 sec)

 

 

 

此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑:

mysql> select * from source_tab where name = '8';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 8    |  1 |

|  5 | 8    |  1 |

|  6 | 8    |  1 |

|  7 | 8    |  1 |

|  8 | 8    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

 

mysql> select * from target_tab;

+------+------+

| id   | name |

+------+------+

| 4    | 1.00 |

| 5    | 1.00 |

| 6    | 1.00 |

| 7    | 1.00 |

| 8    | 1.00 |

+------+------+

5 rows in set (0.00 sec)

mysql> select * from tt1 where name = '1';

Empty set (0.00 sec)

 

mysql> select * from source_tab where name = '8';

+----+------+----+

| d1 | name | d2 |

+----+------+----+

|  4 | 8    |  1 |

|  5 | 8    |  1 |

|  6 | 8    |  1 |

|  7 | 8    |  1 |

|  8 | 8    |  1 |

+----+------+----+

5 rows in set (0.00 sec)

 

mysql> select * from target_tab;

+------+------+

| id   | name |

+------+------+

| 4    | 1.00 |

| 5    | 1.00 |

| 6    | 1.00 |

| 7    | 1.00 |

| 8    | 1.00 |

+------+------+

5 rows in set (0.00 sec)

从上可见,设置系统变量innodb_locks_unsafe_for_binlog的值为“on”后,InnoDB 不再对source_tab加锁,结果也符合应用逻辑,但是如果分析BINLOG的内容:

......
SET TIMESTAMP=1169175130;
BEGIN;
# at 274
#070119 10:51:57 server id 1  end_log_pos 105   Query  
thread_id=1     exec_time=0     error_code=0
SET TIMESTAMP=1169175117;
update source_tab set name = '8' where name = '1';
# at 379
#070119 10:52:10 server id 1  end_log_pos 406   Xid = 5
COMMIT;
# at 406
#070119 10:52:14 server id 1  end_log_pos 474   Query  
thread_id=2     exec_time=0     error_code=0
SET TIMESTAMP=1169175134;
BEGIN;
# at 474
#070119 10:51:29 server id 1  end_log_pos 119   Query  
thread_id=2     exec_time=0     error_code=0
SET TIMESTAMP=1169175089;
insert into target_tab select d1,name from source_tab where name = '1';
# at 593
#070119 10:52:14 server id 1  end_log_pos 620   Xid = 7
COMMIT;
......

可以发现,在BINLOG中,更新操作的位置在INSERT...SELECT之前,如果使用这个BINLOG进行数据库恢复,恢复的结果与实际的 应用逻辑不符;如果进行复制,就会导致主从数据库不一致!

通过上面的例子,我们就不难理解为什么MySQL在处理“Insert  into target_tab select * from source_tab where ...”和“create  table new_tab ...select ... From  source_tab where ...”时要给source_tab加锁,而不是使用对并发影响最小的多版本数据来实现一致性读。还要特别说明的是,如果上述语句的SELECT是范围条 件,InnoDB还会给源表加间隙锁(Next-Lock)。

因此,INSERT...SELECT...和CREATE TABLE...SELECT...语句,可能会阻止对源表的并发更新,造成对源表锁的等待。如果查询比较复杂的话,会造成严重的性能问题,我们在应用中 应尽量避免使用。实际上,MySQL将这种SQL叫作不确定(non-deterministic)的SQL,不推荐使用。

如果应用中一定要用这种SQL来实现业务逻辑,又不希望对源表的并发更新产生影响,可以采取以下两种措施:

·一是采取上面示例中的做法,将innodb_locks_unsafe_for_binlog的值设置为“on”,强制MySQL使用多版本数据 一致性读。但付出的代价是可能无法用binlog正确地恢复或复制数据,因此,不推荐使用这种方式。

·二是通过使用“select * from source_tab ... Into outfile”和“load data infile ...”语句组合来间接实现,采用这种方式MySQL不会给source_tab加锁。

20.3.7 InnoDB在不同隔离级别下的一致性读及锁的差异

前面讲过,锁和多版本数据是InnoDB实现一致性读和ISO/ANSI SQL92隔离级别的手段,因此,在不同的隔离级别下,InnoDB处理SQL时采用的一致性读策略和需要的锁是不同的。同时,数据恢复和复制机制的特 点,也对一些SQL的一致性读策略和锁策略有很大影响。将这些特性归纳成如表20-16所示的内容,以便读者查阅。

表20-16     InnoDB存储引擎中不同SQL在不同隔离级别下锁比较

隔离级别

 

        一致性读和锁

 

SQL

Read Uncommited

Read Commited

Repeatable Read

Serializable

SQL

条件

 

 

 

 

select

相等

None locks

Consisten read/None lock

Consisten read/None lock

Share locks

范围

None locks

Consisten read/None lock

Consisten read/None lock

Share Next-Key

update

相等

exclusive locks

exclusive locks

exclusive locks

Exclusive locks

范围

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

Insert

N/A

exclusive locks

exclusive locks

exclusive locks

exclusive locks

replace

无键冲突

exclusive locks

exclusive locks

exclusive locks

exclusive locks

键冲突

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

delete

相等

exclusive locks

exclusive locks

exclusive locks

exclusive locks

范围

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

Select ... from ... Lock in share mode

相等

Share locks

Share locks

Share locks

Share locks

范围

Share locks

Share locks

Share Next-Key

Share Next-Key

Select * from ... For update

相等

exclusive locks

20.3.8 什么时候使用表锁

对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考 虑使用表级锁。

  第一种情况是:事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这 种情况下可以考虑使用表锁来提高该事务的执行速度。

  第二种情况是:事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事 务回滚带来的开销。

当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。

在InnoDB下,使用表锁要注意以下两点。

(1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、innodb_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表 锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死 锁。有关死锁,下一小节还会继续讨论。

(2)在用LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。正确的方式见如下语句:

例如,如果需要写表t1并从表t读,可以按如下做: 
SET AUTOCOMMIT=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
[do something with tables t1 and t2 here];
COMMIT;
UNLOCK TABLES;

20.3.9 关于死锁

上文讲过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务 外,锁是逐步获得的,这就决定了在InnoDB中发生死锁是可能的。如表20-17所示的就是一个发生死锁的例子。

表20-17           InnoDB存储引擎中的死锁例子

 

session_1

 

session_2

 

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql> select * from table_1 where where id=1 for update;

...

做一些其他处理...

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

 

mysql> select * from table_2 where id=1 for update;

...

 

select * from table_2 where id =1 for update;

session_2已取得排他锁,等待

做一些其他处理...

 

 

 

 

 

mysql> select * from table_1 where where id=1 for update;

死锁

在上面的例子中,两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外 部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数innodb_lock_wait_timeout来解 决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造 成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部 分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法。

(1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 在下面的例子中,由于两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可以避免。

表20-18  InnoDB存储引擎中表顺序造成的死锁例子

 

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select first_name,last_name from actor where actor_id = 1 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| PENELOPE   | GUINESS   |

+------------+-----------+

1 row in set (0.00 sec)

 

 

mysql> insert into country (country_id,country) values(110,'Test');

Query OK, 1 row affected (0.00 sec)

mysql>  insert into country (country_id,country) values(110,'Test');

等待

 

 

mysql> select first_name,last_name from actor where actor_id = 1 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| PENELOPE   | GUINESS   |

+------------+-----------+

1 row in set (0.00 sec)

mysql>  insert into country (country_id,country) values(110,'Test');

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

 

(2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现 死锁的可能。

表20-19  InnoDB存储引擎中表数据操作顺序不一致造成的死锁例子

 

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select first_name,last_name from actor where actor_id = 1 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| PENELOPE   | GUINESS   |

+------------+-----------+

1 row in set (0.00 sec)

 

 

mysql> select first_name,last_name from actor where actor_id = 3 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| ED         | CHASE     |

+------------+-----------+

1 row in set (0.00 sec)

mysql> select first_name,last_name from actor where actor_id = 3 for update;

等待

 

 

mysql> select first_name,last_name from actor where actor_id = 1 for update;

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

mysql> select first_name,last_name from actor where actor_id = 3 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| ED         | CHASE     |

+------------+-----------+

1 row in set (4.71 sec)

 

(3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为 当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。具体演示可参见20.3.3小节中的例子。

 (4)前面讲过,在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用 SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出 现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题,如表20-20所示。

表20-20     InnoDB存储引擎中隔离级别引起的死锁例子1

 

session_1

session_2

mysql> select @@tx_isolation;

+-----------------+

| @@tx_isolation  |

+-----------------+

| REPEATABLE-READ |

+-----------------+

1 row in set (0.00 sec)

 

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select @@tx_isolation;

+-----------------+

| @@tx_isolation  |

+-----------------+

| REPEATABLE-READ |

+-----------------+

1 row in set (0.00 sec)

 

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

当前session对不存在的记录加for update的锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;

Empty set (0.00 sec)

 

 

其他session也可以对不存在的 记录加for update的锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;

Empty set (0.00 sec)

因为其他session也对该记录加了锁,所以当前的插入会等待:

mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');

等待

 

 

因为其他session已经对记录进行了更新,这时候再插入记录就会提示死锁并退出:

mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom');

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

由于其他session已经退出,当前session可以获得锁 并成功插入记录:

mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');

Query OK, 1 row affected (13.35 sec)

 

(5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个 线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。

对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得 的排他锁,如表20-21所示。

 

session_1

session_2

session_3

mysql> select @@tx_isolation;

+----------------+

| @@tx_isolation |

+----------------+

| READ-COMMITTED |

+----------------+

1 row in set (0.00 sec)

 

mysql> set autocommit=0;

Query OK, 0 rows affected (0.01 sec)

mysql> select @@tx_isolation;

+----------------+

| @@tx_isolation |

+----------------+

| READ-COMMITTED |

+----------------+

1 row in set (0.00 sec)

 

mysql> set autocommit=0;

Query OK, 0 rows affected (0.01 sec)

mysql> select @@tx_isolation;

+----------------+

| @@tx_isolation |

+----------------+

| READ-COMMITTED |

+----------------+

1 row in set (0.00 sec)

 

mysql> set autocommit=0;

Query OK, 0 rows affected (0.01 sec)

Session_1获得for update的共享锁:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;

Empty set (0.00 sec)

由于记录不存在,session_2也可以获得for update的 共享锁:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;

Empty set (0.00 sec)

 

Session_1可以成功插入记录:

mysql> insert into actor (actor_id,first_name,last

_name) values(201,'Lisa','Tom');

Query OK, 1 row affected (0.00 sec)

 

 

 

Session_2插入申请等待获得锁:

mysql> insert into actor (actor_id,first_name,

last_name) values(201,'Lisa','Tom');

等待

 

Session_1成功提交:

mysql> commit;

Query OK, 0 rows affected (0.04 sec)

 

 

 

Session_2获得锁,发现插入记录主键重,这个时候抛出了异常,但是并没有释放共享锁:

mysql> insert into actor (actor_id,first_name,

last_name) values(201,'Lisa','Tom');

ERROR 1062 (23000): Duplicate entry '201' for key 'PRIMARY'

 

 

 

Session_3申请获得共享锁,因为session_2已 经锁定该记录,所以session_3需要等待:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;

等待

 

这个时候,如果session_2直接对记录进行更新操作,则会抛出死锁的异常:

mysql> update actor set last_name='Lan' where actor_id = 201;

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

 

 

 

Session_2释放锁后,session_3获得锁:

mysql> select first_name, last_name from actor where actor_id = 201 for update;

+------------+-----------+

| first_name | last_name |

+------------+-----------+

| Lisa       | Tom       |

+------------+-----------+

1 row in set (31.12 sec)

尽管通过上面介绍的设计和SQL优化等措施,可以大大减少死锁,但死锁很难完全避免。因此,在程序设计中总是捕获并处理 死锁异常是一个很好的编程习惯。

如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因。返回结果中包括死锁相关事务的详细信息,如引发死锁的SQL语句,事务已经获得的锁,正在等待什么锁,以 及被回滚的事务等。据此可以分析死锁产生的原因和改进措施。下面是一段SHOW INNODB STATUS输出的样例:

mysql> show innodb status \G
…….
------------------------
LATEST DETECTED DEADLOCK
------------------------
070710 14:05:16
*** (1) TRANSACTION:
TRANSACTION 0 117470078, ACTIVE 117 sec, process no 1468, OS
thread id 1197328736 inserting
mysql tables in use 1, locked 1
LOCK WAIT 5 lock struct(s), heap size 1216
MySQL thread id 7521657, query id 673468054 localhost root update
insert into country (country_id,country) values(110,'Test')
………
*** (2) TRANSACTION:
TRANSACTION 0 117470079, ACTIVE 39 sec, process no 1468, OS
thread id 1164048736 starting index read, thread declared inside InnoDB 500
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1216, undo log entries 1
MySQL thread id 7521664, query id 673468058 localhost root statistics
select first_name,last_name from actor where actor_id = 1 for update
*** (2) HOLDS THE LOCK(S):
………
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
………
*** WE ROLL BACK TRANSACTION (1)
……

20.4 小结

本章重点介绍了MySQL中MyISAM表级锁和InnoDB行级锁的实现特点,并讨论了两种存储引擎经常遇到的锁问题和解决办法。

对于MyISAM的表锁,主要讨论了以下几点:

(1)共享读锁(S)之间是兼容的,但共享读锁(S)与排他写锁(X)之间,以及排他写锁(X)之间是互斥的,也就是说读和写是串行的。

(2)在一定条件下,MyISAM允许查询和插入并发执行,我们可以利用这一点来解决应用中对同一表查询和插入的锁争用问题。

(3)MyISAM默认的锁调度机制是写优先,这并不一定适合所有应用,用户可以通过设置LOW_PRIORITY_UPDATES参数,或在 INSERT、UPDATE、DELETE语句中指定LOW_PRIORITY选项来调节读写锁的争用。

(4)由于表锁的锁定粒度大,读写之间又是串行的,因此,如果更新操作较多,MyISAM表可能会出现严重的锁等待,可以考虑采用InnoDB表来 减少锁冲突。

对于InnoDB表,本章主要讨论了以下几项内容。

·InnoDB的行锁是基于锁引实现的,如果不通过索引访问数据,InnoDB会使用表锁。

·介绍了InnoDB间隙锁(Next-key)机制,以及InnoDB使用间隙锁的原因。

·在不同的隔离级别下,InnoDB的锁机制和一致性读策略不同。

·MySQL的恢复和复制对InnoDB锁机制和一致性读策略也有较大影响。

·锁冲突甚至死锁很难完全避免。

在了解InnoDB锁特性后,用户可以通过设计和SQL调整等措施减少锁冲突和死锁,包括:

·尽量使用较低的隔离级别;

·精心设计索引,并尽量使用索引访问数据,使加锁更精确,从而减少锁冲突的机会;

·选择合理的事务大小,小事务发生锁冲突的几率也更小;

·给记录集显示加锁时,最好一次性请求足够级别的锁。比如要修改数据的话,最好直接申请排他锁,而不是先申请共享锁,修改时再请求排他锁,这样容易 产生死锁;

·不同的程序访问一组表时,应尽量约定以相同的顺序访问各表,对一个表而言,尽可能以固定的顺序存取表中的行。这样可以大大减少死锁的机会;

·尽量用相等条件访问数据,这样可以避免间隙锁对并发插入的影响;

·不要申请超过实际需要的锁级别;除非必须,查询时不要显示加锁;

·对于一些特定的事务,可以使用表锁来提高处理速度或减少死锁的可能。

阅读(1787) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~