分类:
2009-08-26 15:19:09
. Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15
. The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
. Output the sum of the maximal sub-rectangle.
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
15
题意:
求最大子矩阵和
思路:
a11 a12 a13
a21 a22 a23
a31 a32 a33
如图,先求第一行最大子段和,再求第一行跟第二行合起来的最大子段和,如a21+a11, a22+a12, a23+a13 的最大子段和,再求第一到第三合起来的最大子段和,如a11+a21+a31, a12+a22+a32, a13+a23+a33的最大子段和…..以此类推,直到求出整个矩阵的合起来的最大子段和,求出他们之中最大的那个和就是解.
|