如何在linux/unix中设置线程的优先级
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg);
来创建线程,但是如何设置线程的优先级呢?
在讨论这个问题的时候,我们先要确定当前线程使用的调度策略,posix提供了
int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);函数来获取所
使用的调度策略,它们是:SCHED_FIFO, SCHED_RR 和 SCHED_OTHER。
我们可以使用
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
来获取线程线程可是设置的最大和最小的优先级值,如果调用成功就返回最大和最小的优先级值,否则返回-1。
从我现在运行的linux系统中,我使用下列程序(程序见附录)获取了对应三种调度策略中的最大和最小优先级:
policy = SCHED_OTHER
Show current configuration of priority
max_priority = 0
min_priority = 0
Show SCHED_FIFO of priority
max_priority = 99
min_priority = 1
Show SCHED_RR of priority
max_priority = 99
min_priority = 1
Show priority of current thread
priority = 0
Set thread policy
Set SCHED_FIFO policy
policy = SCHED_FIFO
Set SCHED_RR policy
policy = SCHED_RR
Restore current policy
policy = SCHED_OTHER
我们可以看到
SCHED_OTHER是不支持优先级使用的,而SCHED_FIFO和SCHED_RR支持优先级的使用,他们分别为1和99,数值越大优先级越高。 从上面的结果我们可以看出,如果程序控制线程的优先级,一般是用pthread_attr_getschedpolicy来获取系统使用的调度策略,如果是SCHED_OTHER的话,表明当前策略不支持线程优先级的使用,否则可以。当然所设定的优先级范围必须在最大和最小值之间。我们可以通过sched_get_priority_max和sched_get_priority_min来获取。
可能网友会问,是否我们可以通过int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);来设定自己所需的调度策略呢?我觉得是完全可以的(有些系统需要定义_POSIX_THREAD_PRIORITY_SCHEDULING),只要系统实现了对应的调用策略。
说了半天,我们还没有说,在系统允许使用线程优先级别的时候,如何设置优先级别呢?
int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param *param);
int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param *param);
上面两个函数分别用于设置线程的优先级,struct sched_param的定义如下
struct sched_param
{
int __sched_priority; //所要设定的线程优先级
};
例:创建优先级为10的线程
pthread_attr_t attr;
struct sched_param param;
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_RR);
param.sched_priority = 10;
pthread_attr_setschedparam(&attr, ¶m);
pthread_create(xxx , &attr , xxx , xxx);
pthread_attr_destroy(&attr);
附:使用的测试程序:
#include
#include
#include
#include
using namespace std;
static int get_thread_policy( pthread_attr_t &attr )
{
int policy;
int rs = pthread_attr_getschedpolicy( &attr, &policy );
assert( rs == 0 );
switch ( policy )
{
case SCHED_FIFO:
cout << "policy = SCHED_FIFO" << endl;
break;
case SCHED_RR:
cout << "policy = SCHED_RR" << endl;
break;
case SCHED_OTHER:
cout << "policy = SCHED_OTHER" << endl;
break;
default:
cout << "policy = UNKNOWN" << endl;
break;
}
return policy;
}
static void show_thread_priority( pthread_attr_t &attr, int policy )
{
int priority = sched_get_priority_max( policy );
assert( priority != -1 );
cout << "max_priority = " << priority << endl;
priority = sched_get_priority_min( policy );
assert( priority != -1 );
cout << "min_priority = " << priority << endl;
}
static int get_thread_priority( pthread_attr_t &attr )
{
struct sched_param param;
int rs = pthread_attr_getschedparam( &attr, ¶m );
assert( rs == 0 );
cout << "priority = " << param.__sched_priority << endl;
return param.__sched_priority;
}
static void set_thread_policy( pthread_attr_t &attr, int policy )
{
int rs = pthread_attr_setschedpolicy( &attr, policy );
assert( rs == 0 );
get_thread_policy( attr );
}
int main( void )
{
pthread_attr_t attr;
struct sched_param sched;
int rs;
rs = pthread_attr_init( &attr );
assert( rs == 0 );
int policy = get_thread_policy( attr );
cout << "Show current configuration of priority" << endl;
show_thread_priority( attr, policy );
cout << "Show SCHED_FIFO of priority" << endl;
show_thread_priority( attr, SCHED_FIFO );
cout << "Show SCHED_RR of priority" << endl;
show_thread_priority( attr, SCHED_RR );
cout << "Show priority of current thread" << endl;
int priority = get_thread_priority( attr );
cout << "Set thread policy" << endl;
cout << "Set SCHED_FIFO policy" << endl;
set_thread_policy( attr, SCHED_FIFO );
cout << "Set SCHED_RR policy" << endl;
set_thread_policy( attr, SCHED_RR );
cout << "Restore current policy" << endl;
set_thread_policy( attr, policy );
rs = pthread_attr_destroy( &attr );
assert( rs == 0 );
return 0;
}
阅读(1600) | 评论(0) | 转发(0) |