Chinaunix首页 | 论坛 | 博客
  • 博客访问: 494342
  • 博文数量: 135
  • 博客积分: 3010
  • 博客等级: 中校
  • 技术积分: 905
  • 用 户 组: 普通用户
  • 注册时间: 2010-01-24 19:31
文章分类

全部博文(135)

文章存档

2010年(135)

我的朋友

分类: LINUX

2010-07-21 23:58:50

 详解Linux2.6内核中基于platform机制的驱动模型 
Sailor_forever  sailing_9806#163.com

(本原创文章发表于Sailor_forever 的个人blog,未经本人许可,不得用于商业用途。任何个人、媒体、其他网站不得私自抄袭;网络媒体转载请注明出处,增加原文链接,否则属于侵权行为。如 有任何问题,请留言或者发邮件给sailing_9806#163.com)


http://blog.csdn.net/sailor_8318/archive/2010/01/29/5267698.aspx

【摘要】本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型。首先介绍了Platform总线的基本概念,接着介绍了platform device和platform driver的定义和加载过程,分析了其与基类device 和driver的派生关系及在此过程中面向对象的设计思想。最后以ARM S3C2440中I2C控制器为例介绍了基于platform总线的驱动开发流程。

【关键字】platform_bus, platform_device, resource , platform_driver, file_operations

目录

1    何谓platform bus?    2
2    device和platform_device    3
3    device_register和platform_device_register    5
4    device_driver和platform driver    8
5    driver_register 和platform_driver_register    10
6    bus、device及driver三者之间的关系    17
7    哪些适用于plarform驱动?    18
8    基于platform总线的驱动开发流程    18
8.1    初始化platform_bus    19
8.2    定义platform_device    22
8.3    注册platform_device    22
8.4    定义platform_driver    28
8.5    注册platform_driver    29
8.6    操作设备    32

1    何谓platform bus?
Linux系统中许多部分对设备是如何链接的并不感兴趣,但是他们需要知道哪些类型的设备是可以使用的。设备模型提供了一种机制来对设备进行分类,在更高的功能层面上描述这些设备,并使得这些设备对用户空间可见。因此从2.6内核开始引入了设备模型。

总线是处理器和一个或多个设备之间的通道,在设备模型中, 所有的设备都通过总线相连。总线可以相互插入。设备模型展示了总线和它们所控制的设备之间的实际连接。

Platform总线是2.6 kernel中最近引入的一种虚拟总线,主要用来管理CPU的片上资源,具有更好的移植性,因此在2.6 kernel中,很多驱动都用platform改写了。

platform_bus_type的定义如下:

609struct bus_type platform_bus_type = {
 610        .name           = "platform",
 611        .dev_attrs      = platform_dev_attrs,
 612        .match          = platform_match,
 613        .uevent         = platform_uevent,
 614        .suspend        = platform_suspend,
 615        .suspend_late   = platform_suspend_late,
 616        .resume_early   = platform_resume_early,
 617        .resume         = platform_resume,
 618};
 619EXPORT_SYMBOL_GPL(platform_bus_type);

http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L55
  55struct bus_type {
  56        const char              *name;
  57        struct bus_attribute    *bus_attrs;
  58        struct device_attribute *dev_attrs;
  59        struct driver_attribute *drv_attrs;
  60
  61        int (*match)(struct device *dev, struct device_driver *drv);
  62        int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
  63        int (*probe)(struct device *dev);
  64        int (*remove)(struct device *dev);
  65        void (*shutdown)(struct device *dev);
  66
  67        int (*suspend)(struct device *dev, pm_message_t state);
  68        int (*suspend_late)(struct device *dev, pm_message_t state);
  69        int (*resume_early)(struct device *dev);
  70        int (*resume)(struct device *dev);
  71
  72        struct bus_type_private *p;
  73};

总线名称是"platform",其只是bus_type的一种,定义了总线的属性,同时platform_bus_type还有相关操作方法,如挂起、中止、匹配及hotplug事件等。

总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver,由match操作方法进行匹配。

 
Bus、driver及devices的连接关系

2    device和platform_device
Plarform device会有一个名字用于driver binding(在注册driver的时候会查找driver的目标设备的bus位置,这个过程称为driver binding),另外IRQ以及地址空间等资源也要给出 。

platform_device结构体用来描述设备的名称、资源信息等。该结构被定义在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L16中,定义原型如下:

  16struct platform_device {
  17        const char      * name; //定义平台设备的名称,此处设备的命名应和相应驱动程序命名一致

  18        int             id;
  19        struct device   dev;
  20        u32             num_resources;
  21        struct resource * resource;  //定义平台设备的资源
  22};

在这个结构里封装了struct device及struct resource。可知:platform_device由device派生而来,是一种特殊的device。

下面来看一下platform_device结构体中最重要的一个成员struct resource * resource。struct resource被定义在中,定义原型如下:
  14/*
  15 * Resources are tree-like, allowing
  16 * nesting etc..
  17 */
  18struct resource {
  19        resource_size_t start;  //定义资源的起始地址
  20        resource_size_t end;  //定义资源的结束地址
  21        const char *name; //定义资源的名称
  22        unsigned long flags; 定义资源的类型,比如MEM,IO,IRQ,DMA类型
  23        struct resource *parent, *sibling, *child;
  24};

这个结构表示设备所拥有的资源,即I/O端口、I/O映射内存、中断及DMA等。这里的地址指的是物理地址。

另外还需要注意platform_device中的device结构,它详细描述了设备的情况,其为所有设备的基类,定义如下:
http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L422
422struct device {
 423        struct klist            klist_children;
 424        struct klist_node       knode_parent;   /* node in sibling list */
 425        struct klist_node       knode_driver;
 426        struct klist_node       knode_bus;
 427        struct device           *parent;
 428
 429        struct kobject kobj;
 430        char    bus_id[BUS_ID_SIZE];    /* position on parent bus */
 431        struct device_type      *type;
 432        unsigned                is_registered:1;
 433        unsigned                uevent_suppress:1;
 434
 435        struct semaphore        sem;    /* semaphore to synchronize calls to
 436                                         * its driver.
 437                                         */
 438
 439        struct bus_type *bus;           /* type of bus device is on */
 440        struct device_driver *driver;   /* which driver has allocated this
 441                                           device */
 442        void            *driver_data;   /* data private to the driver */
 443        void            *platform_data; /* Platform specific data, device
 444                                           core doesn't touch it */
 445        struct dev_pm_info      power;
 446
 447#ifdef CONFIG_NUMA
 448        int             numa_node;      /* NUMA node this device is close to */
 449#endif
 450        u64             *dma_mask;      /* dma mask (if dma'able device) */
 451        u64             coherent_dma_mask;/* Like dma_mask, but for
 452                                             alloc_coherent mappings as
 453                                             not all hardware supports
 454                                             64 bit addresses for consistent
 455                                             allocations such descriptors. */
 456
 457        struct device_dma_parameters *dma_parms;
 458
 459        struct list_head        dma_pools;      /* dma pools (if dma'ble) */
 460
 461        struct dma_coherent_mem *dma_mem; /* internal for coherent mem
 462                                             override */
 463        /* arch specific additions */
 464        struct dev_archdata     archdata;
 465
 466        spinlock_t              devres_lock;
 467        struct list_head        devres_head;
 468
 469        /* class_device migration path */
 470        struct list_head        node;
 471        struct class            *class;
 472        dev_t                   devt;   /* dev_t, creates the sysfs "dev" */
 473        struct attribute_group  **groups;       /* optional groups */
 474
 475        void    (*release)(struct device *dev);
 476};
 477

3    device_register和platform_device_register


 870/**
 871 * device_register - register a device with the system.
 872 * @dev: pointer to the device structure
 873 *
 874 * This happens in two clean steps - initialize the device
 875 * and add it to the system. The two steps can be called
 876 * separately, but this is the easiest and most common.
 877 * I.e. you should only call the two helpers separately if
 878 * have a clearly defined need to use and refcount the device
 879 * before it is added to the hierarchy.
 880 */
 881int device_register(struct device *dev)
 882{
 883        device_initialize(dev);
 884        return device_add(dev);
 885}
初始化一个设备,然后加入到系统中。


316/**
 317 * platform_device_register - add a platform-level device
 318 * @pdev: platform device we're adding
 319 */
 320int platform_device_register(struct platform_device *pdev)
 321{
 322        device_initialize(&pdev->dev);
 323        return platform_device_add(pdev);
 324}
 325EXPORT_SYMBOL_GPL(platform_device_register);

我们看到注册一个platform device分为了两部分,初始化这个platform_device,然后将此platform_device添加到platform总线中。输入参数platform_device可以是静态的全局设备。

另外一种机制就是动态申请platform_device_alloc一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。

无论哪一种platform_device,最终都将通过platform_device_add这册到platform总线上。

229/**
 230 * platform_device_add - add a platform device to device hierarchy
 231 * @pdev: platform device we're adding
 232 *
 233 * This is part 2 of platform_device_register(), though may be called
 234 * separately _iff_ pdev was allocated by platform_device_alloc().
 235 */
 236int platform_device_add(struct platform_device *pdev)
 237{
 238        int i, ret = 0;
 239
 240        if (!pdev)
 241                return -EINVAL;
 242
初始化设备的parent为platform_bus,初始化驱备的总线为platform_bus_type。
 243        if (!pdev->dev.parent)
 244                pdev->dev.parent = &platform_bus;
 245
 246        pdev->dev.bus = &platform_bus_type;
 247
/*++++++++++++++
The platform_device.dev.bus_id is the canonical name for the devices.
It's built from two components:

* platform_device.name ... which is also used to for driver matching.
* platform_device.id ... the device instance number, or else "-1"
to indicate there's only one.

These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and
"serial/3" indicates bus_id "serial.3"; both would use the platform_driver
named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)
and use the platform_driver called "my_rtc".
++++++++++++++*/
 248        if (pdev->id != -1)
 249                snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name,
 250                         pdev->id);
 251        else
 252                strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE);
 253
设置设备struct device 的bus_id成员,留心这个地方,在以后还需要用到这个的。
 254        for (i = 0; i < pdev->num_resources; i++) {
 255                struct resource *p, *r = &pdev->resource[i];
 256
 257                if (r->name == NULL)
 258                        r->name = pdev->dev.bus_id;
 259
 260                p = r->parent;
 261                if (!p) {
 262                        if (r->flags & IORESOURCE_MEM)
 263                                p = &iomem_resource;
 264                        else if (r->flags & IORESOURCE_IO)
 265                                p = &ioport_resource;
 266                }
//resources分为两种IORESOURCE_MEM和IORESOURCE_IO
 //CPU对外设IO端口物理地址的编址方式有两种:I/O映射方式和内存映射方式
 267
 268                if (p && insert_resource(p, r)) {
 269                        printk(KERN_ERR
 270                               "%s: failed to claim resource %d\n",
 271                               pdev->dev.bus_id, i);
 272                        ret = -EBUSY;
 273                        goto failed;
 274                }
 275        }
 276
 277        pr_debug("Registering platform device '%s'. Parent at %s\n",
 278                 pdev->dev.bus_id, pdev->dev.parent->bus_id);
 279
 280        ret = device_add(&pdev->dev);
 281        if (ret == 0)
 282                return ret;
 283
 284 failed:
 285        while (--i >= 0)
 286                if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))
 287                        release_resource(&pdev->resource[i]);
 288        return ret;
 289}
 290EXPORT_SYMBOL_GPL(platform_device_add);

由platform_device_register和platform_device_add的实现可知,device_register()和platform_device_register()都会首先初始化设备
区别在于第二步:其实platform_device_add()包括device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。

4    device_driver和platform driver
Platform device是一种device自己是不会做事情的,要有人为它做事情,那就是platform driver。platform driver遵循linux系统的driver model。对于device的discovery/enumerate都不是driver自己完成的而是由由系统的driver注册机制完成。driver编写人员只要将注册必须的数据结构初始化并调用注册driver的kernel API就可以了。

接下来来看platform_driver结构体的原型定义,在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L48中,代码如下:
48 struct platform_driver {
  49        int (*probe)(struct platform_device *);
  50        int (*remove)(struct platform_device *);
  51        void (*shutdown)(struct platform_device *);
  52        int (*suspend)(struct platform_device *, pm_message_t state);
  53        int (*suspend_late)(struct platform_device *, pm_message_t state);
  54        int (*resume_early)(struct platform_device *);
  55        int (*resume)(struct platform_device *);
  56        struct device_driver driver;
  57};

可见,它包含了设备操作的几个功能函数,同时包含了一个device_driver结构,说明device_driver是platform_driver的基类。驱动程序中需要初始化这个变量。下面看一下这个变量的定义,位于http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L121中:
 
121struct device_driver {
 122        const char              *name;
 123        struct bus_type         *bus;
 124
 125        struct module           *owner;
 126        const char              *mod_name;      /* used for built-in modules */
 127
 128        int (*probe) (struct device *dev);
 129        int (*remove) (struct device *dev);
 130        void (*shutdown) (struct device *dev);
 131        int (*suspend) (struct device *dev, pm_message_t state);
 132        int (*resume) (struct device *dev);
 133        struct attribute_group **groups;
 134
 135        struct driver_private *p;
 136};

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

需要注意这两个变量:name和owner。其作用主要是为了和相关的platform_device关联起来,owner的作用是说明模块的所有者,驱动程序中一般初始化为THIS_MODULE。

device_driver结构中也有一个name变量。platform_driver从字面上来看就知道是设备驱动。设备驱动是为谁服务的呢?当然是设备了。内核正是通过这个一致性来为驱动程序找到资源,即 platform_device中的resource。

5    driver_register 和platform_driver_register

内核提供的platform_driver结构体的注册函数为platform_driver_register(),其原型定义在文件中,具体实现代码如下:
439/**
 440 * platform_driver_register
 441 * @drv: platform driver structure
 442 */
 443int platform_driver_register(struct platform_driver *drv)
 444{
 445        drv->driver.bus = &platform_bus_type;
   /*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通过  platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。*/

 446        if (drv->probe)
 447                drv->driver.probe = platform_drv_probe;
 //在really_probe函数中,回调了platform_drv_probe函数

448        if (drv->remove)
 449                drv->driver.remove = platform_drv_remove;
 450        if (drv->shutdown)
 451                drv->driver.shutdown = platform_drv_shutdown;
 452        if (drv->suspend)
 453                drv->driver.suspend = platform_drv_suspend;
 454        if (drv->resume)
 455                drv->driver.resume = platform_drv_resume;
 456        return driver_register(&drv->driver);
 457}
 458EXPORT_SYMBOL_GPL(platform_driver_register);

不要被上面的platform_drv_XXX吓倒了,它们其实很简单,就是将struct device转换为struct platform_device和struct platform_driver,然后调用platform_driver中的相应接口函数。那为什么不直接调用platform_drv_XXX等接口呢?这就是Linux内核中面向对象的设计思想。

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,device_driver中具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

在文件中,实现了driver_register()函数。

209/**
 210 * driver_register - register driver with bus
 211 * @drv: driver to register
 212 *
 213 * We pass off most of the work to the bus_add_driver() call,
 214 * since most of the things we have to do deal with the bus
 215 * structures.
 216 */
 217int driver_register(struct device_driver *drv)
 218{
 219        int ret;
 220
//如果总线的方法和设备自己的方法同时存在,将打印告警信息,对于platform bus,其没有probe等接口
 221        if ((drv->bus->probe && drv->probe) ||
 222            (drv->bus->remove && drv->remove) ||
 223            (drv->bus->shutdown && drv->shutdown))
 224                printk(KERN_WARNING "Driver '%s' needs updating - please use "
 225                        "bus_type methods\n", drv->name);
 226        ret = bus_add_driver(drv);
 227        if (ret)
 228                return ret;
 229        ret = driver_add_groups(drv, drv->groups);
 230        if (ret)
 231                bus_remove_driver(drv);
 232        return ret;
 233}
 234EXPORT_SYMBOL_GPL(driver_register);

226        其主要将驱动挂接到总线上,通过总线来驱动设备。

644/**
 645 * bus_add_driver - Add a driver to the bus.
 646 * @drv: driver.
 647 */
 648int bus_add_driver(struct device_driver *drv)
 649{
 650        struct bus_type *bus;
 651        struct driver_private *priv;
 652        int error = 0;
 653
 654        bus = bus_get(drv->bus);
 655        if (!bus)
 656                return -EINVAL;
 657
 658        pr_debug("bus: '%s': add driver %s\n", bus->name, drv->name);
 659
 660        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 661        if (!priv) {
 662                error = -ENOMEM;
 663                goto out_put_bus;
 664        }
 665        klist_init(&priv->klist_devices, NULL, NULL);
 666        priv->driver = drv;
 667        drv->p = priv;
 668        priv->kobj.kset = bus->p->drivers_kset;
 669        error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,
 670                                     "%s", drv->name);
 671        if (error)
 672                goto out_unregister;
 673
 674        if (drv->bus->p->drivers_autoprobe) {
 675                error = driver_attach(drv);
 676                if (error)
 677                        goto out_unregister;
 678        }
 679        klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
 680        module_add_driver(drv->owner, drv);
 681
 682        error = driver_create_file(drv, &driver_attr_uevent);
 683        if (error) {
 684                printk(KERN_ERR "%s: uevent attr (%s) failed\n",
 685                        __FUNCTION__, drv->name);
 686        }
 687        error = driver_add_attrs(bus, drv);
 688        if (error) {
 689                /* How the hell do we get out of this pickle? Give up */
 690                printk(KERN_ERR "%s: driver_add_attrs(%s) failed\n",
 691                        __FUNCTION__, drv->name);
 692        }
 693        error = add_bind_files(drv);
 694        if (error) {
 695                /* Ditto */
 696                printk(KERN_ERR "%s: add_bind_files(%s) failed\n",
 697                        __FUNCTION__, drv->name);
 698        }
 699
 700        kobject_uevent(&priv->kobj, KOBJ_ADD);
 701        return error;
 702out_unregister:
 703        kobject_put(&priv->kobj);
 704out_put_bus:
 705        bus_put(bus);
 706        return error;
 707}

如果总线上的driver是自动probe的话,则将该总线上的driver和device绑定起来。


272/**
 273 * driver_attach - try to bind driver to devices.
 274 * @drv: driver.
 275 *
 276 * Walk the list of devices that the bus has on it and try to
 277 * match the driver with each one.  If driver_probe_device()
 278 * returns 0 and the @dev->driver is set, we've found a
 279 * compatible pair.
 280 */
 281int driver_attach(struct device_driver *drv)
 282{
 283        return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
 284}
 285EXPORT_SYMBOL_GPL(driver_attach);

扫描该总线上的每一个设备,将当前driver和总线上的设备进行match,如果匹配成功,则将设备和driver绑定起来。

246static int __driver_attach(struct device *dev, void *data)
 247{
 248        struct device_driver *drv = data;
 249
 250        /*
 251         * Lock device and try to bind to it. We drop the error
 252         * here and always return 0, because we need to keep trying
 253         * to bind to devices and some drivers will return an error
 254         * simply if it didn't support the device.
 255         *
 256         * driver_probe_device() will spit a warning if there
 257         * is an error.
 258         */
 259
 260        if (dev->parent)        /* Needed for USB */
 261                down(&dev->parent->sem);
 262        down(&dev->sem);
 263        if (!dev->driver)
 264                driver_probe_device(drv, dev);
 265        up(&dev->sem);
 266        if (dev->parent)
 267                up(&dev->parent->sem);
 268
 269        return 0;
 270}

263,如果该设备尚没有匹配的driver,则尝试匹配。


170/**
 171 * driver_probe_device - attempt to bind device & driver together
 172 * @drv: driver to bind a device to
 173 * @dev: device to try to bind to the driver
 174 *
 175 * First, we call the bus's match function, if one present, which should
 176 * compare the device IDs the driver supports with the device IDs of the
 177 * device. Note we don't do this ourselves because we don't know the
 178 * format of the ID structures, nor what is to be considered a match and
 179 * what is not.
 180 *
 181 * This function returns 1 if a match is found, -ENODEV if the device is
 182 * not registered, and 0 otherwise.
 183 *
 184 * This function must be called with @dev->sem held.  When called for a
 185 * USB interface, @dev->parent->sem must be held as well.
 186 */
 187int driver_probe_device(struct device_driver *drv, struct device *dev)
 188{
 189        int ret = 0;
 190
 191        if (!device_is_registered(dev))
 192                return -ENODEV;
 193        if (drv->bus->match && !drv->bus->match(dev, drv))
 194                goto done;
 195
 196        pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
 197                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);
 198
 199        ret = really_probe(dev, drv);
 200
 201done:
 202        return ret;
 203}

193,如果该总线上的设备需要进行匹配,则验证是否匹配。对于platform总线,其匹配过程如下:

542/**
 543 * platform_match - bind platform device to platform driver.
 544 * @dev: device.
 545 * @drv: driver.
 546 *
 547 * Platform device IDs are assumed to be encoded like this:
 548 * "", where is a short description of the type of
 549 * device, like "pci" or "floppy", and is the enumerated
 550 * instance of the device, like '0' or '42'.  Driver IDs are simply
 551 * "".  So, extract the from the platform_device structure,
 552 * and compare it against the name of the driver. Return whether they match
 553 * or not.
 554 */
 555static int platform_match(struct device *dev, struct device_driver *drv)
 556{
 557        struct platform_device *pdev;
 558
 559        pdev = container_of(dev, struct platform_device, dev);
 560        return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);
 561}

560,简单的进行字符串匹配,这也是我们强调platform_device和platform_driver中的name属性需要一致的原因。

匹配成功后,则调用probe接口。

  98static atomic_t probe_count = ATOMIC_INIT(0);
  99static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);
 100
 101static int really_probe(struct device *dev, struct device_driver *drv)
 102{
 103        int ret = 0;
 104
 105        atomic_inc(&probe_count);
 106        pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
 107                 drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);
 108        WARN_ON(!list_empty(&dev->devres_head));
 109
 110        dev->driver = drv;
 111        if (driver_sysfs_add(dev)) {
 112                printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
 113                        __FUNCTION__, dev->bus_id);
 114                goto probe_failed;
 115        }
 116
 117        if (dev->bus->probe) {
 118                ret = dev->bus->probe(dev);
 119                if (ret)
 120                        goto probe_failed;
 121        } else if (drv->probe) {
 122                ret = drv->probe(dev);
 123                if (ret)
 124                        goto probe_failed;
 125        }
 126
 127        driver_bound(dev);
 128        ret = 1;
 129        pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
 130                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);
 131        goto done;
 132
 133probe_failed:
 134        devres_release_all(dev);
 135        driver_sysfs_remove(dev);
 136        dev->driver = NULL;
 137
 138        if (ret != -ENODEV && ret != -ENXIO) {
 139                /* driver matched but the probe failed */
 140                printk(KERN_WARNING
 141                       "%s: probe of %s failed with error %d\n",
 142                       drv->name, dev->bus_id, ret);
 143        }
 144        /*
 145         * Ignore errors returned by ->probe so that the next driver can try
 146         * its luck.
 147         */
 148        ret = 0;
 149done:
 150        atomic_dec(&probe_count);
 151        wake_up(&probe_waitqueue);
 152        return ret;
 153}
 154

如果bus和driver同时具备probe方法,则优先调用总线的probe函数。否则调用device_driver的probe函数,此probe函数是经过各种类型的driver重载的函数,这就实现了利用基类的统一方法来实现不同的功能。对于platform_driver来说,其就是:

394static int platform_drv_probe(struct device *_dev)
 395{
 396        struct platform_driver *drv = to_platform_driver(_dev->driver);
 397        struct platform_device *dev = to_platform_device(_dev);
 398
 399        return drv->probe(dev);
 400}

然后调用特定platform_driver所定义的操作方法,这个是在定义某个platform_driver时静态指定的操作接口。

至此,platform_driver成功挂接到platform bus上了,并与特定的设备实现了绑定,并对设备进行了probe处理。

6    bus、device及driver三者之间的关系
在数据结构设计上,总线、设备及驱动三者相互关联。

platform device包含device,根据device可以获得相应的bus及driver。

设备添加到总线上后形成一个双向循环链表,根据总线可以获得其上挂接的所有device,进而获得了 platform device。根据device也可以获得驱动该总线上所有设备的相关driver。

platform driver包含driver,根据driver可以获得相应的bus,进而获得bus上所有的device,进一步获得platform device,根据name对driver与platform device进行匹配,匹配成功后将device与相应的driver关联起来,即实现了platform device和platform driver的关联。

匹配成功后调用driver的probe进而调用platform driver的probe,在probe里实现驱动特定的功能。
 

7    哪些适用于plarform驱动?
platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,这样拥有更好的可移植性。platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。Platform driver通过platform bus获取platform_device。

通常情况下只要和内核本身运行依赖性不大的外围设备,相对独立的,拥有各自独立的资源(地址总线和IRQs),都可以用 platform_driver来管理,而timer,irq等小系统之内的设备则最好不用platfrom_driver机制。

platform_device最大的特定是CPU直接寻址设备的寄存器空间,即使对于其他总线设备,设备本身的寄存器无法通过CPU总线访问,但总线的controller仍然需要通过platform bus来管理。

总之,platfrom_driver的根本目的是为了统一管理系统的外设资源,为驱动程序提供统一的接口来访问系统资源,将驱动和资源分离,提高程序的可移植性。

8    基于platform总线的驱动开发流程
基于Platform总线的驱动开发流程如下:
•    定义初始化platform bus
•    定义各种platform devices
•    注册各种platform devices
•    定义相关platform driver
•    注册相关platform driver
•    操作相关设备

 
图 platform机制开发驱动流程

以S3C24xx平台为例,来简单讲述下platform驱动的实现流程。
8.1    初始化platform_bus
Platform总线的初始化是在platform_bus_init()完成的,代码如下:

  26struct device platform_bus = {
  27        .bus_id         = "platform",
  28};
  29EXPORT_SYMBOL_GPL(platform_bus);

621int __init platform_bus_init(void)
 622{
 623        int error;
 624
 625        error = device_register(&platform_bus);
 626        if (error)
 627                return error;
 628        error =  bus_register(&platform_bus_type);
 629        if (error)
 630                device_unregister(&platform_bus);
 631        return error;
 632}

该函数创建了一个名为 “platform”的设备,后续platform的设备都会以此为parent。在sysfs中表示为:所有platform类型的设备都会添加在 platform_bus所代表的目录下,即 /sys/devices/platform下面。
-sh-3.1# ls /sys/devices/platform/   
Fixed MDIO bus.0     fsl-i2c.0            serial8250
fsl-ehci.0           fsl-i2c.1            serial8250.0
fsl-gianfar.0        mpc83xx_spi.0        uevent
fsl-gianfar.1        mpc83xx_wdt.0
fsl-gianfar_mdio.-5  power

-sh-3.1# ls /sys/
block/    class/    firmware/ kernel/   power/    
bus/      devices/  fs/       module/   
-sh-3.1# ls /sys/bus/
i2c/         of_platform/ pci_express/ scsi/        usb/         
mdio_bus/    pci/         platform/    spi/         
-sh-3.1# ls /sys/bus/i2c/
devices/           drivers_autoprobe  uevent             
drivers/           drivers_probe    

-sh-3.1# ls /sys/bus/platform/devices/
Fixed MDIO bus.0/    fsl-gianfar_mdio.-5/ mpc83xx_wdt.0/
fsl-ehci.0/          fsl-i2c.0/           serial8250/
fsl-gianfar.0/       fsl-i2c.1/           serial8250.0/
fsl-gianfar.1/       mpc83xx_spi.0/       
-sh-3.1# ls /sys/bus/platform/drivers 
drivers/           drivers_autoprobe  drivers_probe      
-sh-3.1# ls /sys/bus/platform/drivers/
fsl-ehci/         fsl-gianfar_mdio/ mpc83xx_spi/      serial8250/
fsl-gianfar/      fsl-i2c/          mpc83xx_wdt/     

platform_bus必须在系统注册任何platform driver和platform device之前初始化,那么这是如何实现的呢?



  14/**
  15 * driver_init - initialize driver model.
  16 *
  17 * Call the driver model init functions to initialize their
  18 * subsystems. Called early from init/main.c.
  19 */
  20void __init driver_init(void)
  21{
  22        /* These are the core pieces */
  23        devices_init();
  24        buses_init();
  25        classes_init();
  26        firmware_init();
  27        hypervisor_init();
  28
  29        /* These are also core pieces, but must come after the
  30         * core core pieces.
  31         */
  32        platform_bus_init();
  33        system_bus_init();
  34        cpu_dev_init();
  35        memory_dev_init();
  36}

init/main.c
start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》driver_init 》platform_bus_init

#L32
724/*
 725 * Ok, the machine is now initialized. None of the devices
 726 * have been touched yet, but the CPU subsystem is up and
 727 * running, and memory and process management works.
 728 *
 729 * Now we can finally start doing some real work..
 730 */
 731static void __init do_basic_setup(void)
 732{
 733        /* drivers will send hotplug events */
 734        init_workqueues();
 735        usermodehelper_init();
 736        driver_init();
 737        init_irq_proc();
 738        do_initcalls();
 739}

platform driver和platform device的初始化是在do_initcalls中进行的。

8.2    定义platform_device
http://lxr.linux.no/#linux+v2.6.25/arch/arm/plat-s3c24xx/devs.c#L276中定义了系统的资源,是一个高度可移植的文件,大部分板级资源都在这里集中定义。

274/* I2C */
 275
 276static struct resource s3c_i2c_resource[] = {
 277        [0] = {
 278                .start = S3C24XX_PA_IIC,
 279                .end   = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1,
 280                .flags = IORESOURCE_MEM,
 281        },
 282        [1] = {
 283                .start = IRQ_IIC,
 284                .end   = IRQ_IIC,
 285                .flags = IORESOURCE_IRQ,
 286        }
 287
 288};
 289
 290struct platform_device s3c_device_i2c = {
 291        .name             = "s3c2410-i2c",
 292        .id               = -1,
 293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),
 294        .resource         = s3c_i2c_resource,
 295};
 296
 297EXPORT_SYMBOL(s3c_device_i2c);

设备名称为s3c2410-i2c,“-1”只有一个i2c设备,两个资源s3c_i2c_resource,分别为i2c控制器的寄存器空间和中断信息。

8.3    注册platform_device

定义了platform_device后,需要添加到系统中,就可以调用函数platform_add_devices。


smdk2440_devices将系统资源组织起来,统一注册进内核。

151static struct platform_device *smdk2440_devices[] __initdata = {
 152        &s3c_device_usb,
 153        &s3c_device_lcd,
 154        &s3c_device_wdt,
 155        &s3c_device_i2c,
 156        &s3c_device_iis,
 157};

166static void __init smdk2440_machine_init(void)
 167{
 168        s3c24xx_fb_set_platdata(&smdk2440_fb_info);
 169
 170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));
 171        smdk_machine_init();
 172}
 173
 174MACHINE_START(S3C2440, "SMDK2440")
 175        /* Maintainer: Ben Dooks */
 176        .phys_io        = S3C2410_PA_UART,
 177        .io_pg_offst    = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
 178        .boot_params    = S3C2410_SDRAM_PA + 0x100,
 179
 180        .init_irq       = s3c24xx_init_irq,
 181        .map_io         = smdk2440_map_io,
 182        .init_machine   = smdk2440_machine_init,
 183        .timer          = &s3c24xx_timer,
 184MACHINE_END

170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));
将系统所有资源注册进系统,在此之前platform bus需要初始化成功,否则无法将platform devices挂接到platform bus上。为了保证platform drive初始化时,相关platform资源已经注册进系统,smdk2440_machine_init需要很早执行,而其作为平台初始化init_machine 时,将优先于系统所有驱动的初始化。

其调用顺序如下:
start_kernel》setup_arch》init_machine》arch_initcall(customize_machine)

786arch_initcall(customize_machine);
 787
 788void __init setup_arch(char **cmdline_p)
 789{
 790        struct tag *tags = (struct tag *)&init_tags;
 791        struct machine_desc *mdesc;
 792        char *from = default_command_line;
 793
 794        setup_processor();
 795        mdesc = setup_machine(machine_arch_type);
//根据machine id获得移植时定义的machine desc结构
 796        machine_name = mdesc->name;
 797
 798        if (mdesc->soft_reboot)
 799                reboot_setup("s");
 800
 801        if (__atags_pointer)
 802                tags = phys_to_virt(__atags_pointer);
 803        else if (mdesc->boot_params)
 804                tags = phys_to_virt(mdesc->boot_params);
 805
 806        /*
 807         * If we have the old style parameters, convert them to
 808         * a tag list.
 809         */
 810        if (tags->hdr.tag != ATAG_CORE)
 811                convert_to_tag_list(tags);
 812        if (tags->hdr.tag != ATAG_CORE)
 813                tags = (struct tag *)&init_tags;
 814
 815        if (mdesc->fixup)
 816                mdesc->fixup(mdesc, tags, &from, &meminfo);
 817
 818        if (tags->hdr.tag == ATAG_CORE) {
 819                if (meminfo.nr_banks != 0)
 820                        squash_mem_tags(tags);
 821                save_atags(tags);
 822                parse_tags(tags);
 823        }
 824
 825        init_mm.start_code = (unsigned long) &_text;
 826        init_mm.end_code   = (unsigned long) &_etext;
 827        init_mm.end_data   = (unsigned long) &_edata;
 828        init_mm.brk        = (unsigned long) &_end;
 829
 830        memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 831        boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
 832        parse_cmdline(cmdline_p, from);
 833        paging_init(&meminfo, mdesc);
 834        request_standard_resources(&meminfo, mdesc);
 835
 836#ifdef CONFIG_SMP
 837        smp_init_cpus();
 838#endif
 839
 840        cpu_init();
 841
 842        /*
 843         * Set up various architecture-specific pointers
 844         */
 845        init_arch_irq = mdesc->init_irq;
 846        system_timer = mdesc->timer;
 847        init_machine = mdesc->init_machine;
//对init_machine指针赋值
 848
 849#ifdef CONFIG_VT
 850#if defined(CONFIG_VGA_CONSOLE)
 851        conswitchp = &vga_con;
 852#elif defined(CONFIG_DUMMY_CONSOLE)
 853        conswitchp = &dummy_con;
 854#endif
 855#endif
 856}

777static void (*init_machine)(void) __initdata;
 778
 779static int __init customize_machine(void)
 780{
 781        /* customizes platform devices, or adds new ones */
 782        if (init_machine)
 783                init_machine();
 784        return 0;
 785}
 786arch_initcall(customize_machine);
arch_initcall将customize_machine放在特定的段中,系统将在某个地方运行所有的arch_initcall修饰的函数。


152#ifndef MODULE  //非可加载模块,即编译链接进内核的代码
 153
 154#ifndef __ASSEMBLY__
 155
 156/* initcalls are now grouped by functionality into separate 
 157 * subsections. Ordering inside the subsections is determined
 158 * by link order. 
 159 * For backwards compatibility, initcall() puts the call in 
 160 * the device init subsection.
 161 *
 162 * The `id' arg to __define_initcall() is needed so that multiple initcalls
 163 * can point at the same handler without causing duplicate-symbol build errors.
 164 */
 165
 166#define __define_initcall(level,fn,id) \
 167        static initcall_t __initcall_##fn##id __used \
 168        __attribute__((__section__(".initcall" level ".init"))) = fn
 169
 170/*
 171 * A "pure" initcall has no dependencies on anything else, and purely
 172 * initializes variables that couldn't be statically initialized.
 173 *
 174 * This only exists for built-in code, not for modules.
 175 */
 176#define pure_initcall(fn)               __define_initcall("0",fn,0)
 177
 178#define core_initcall(fn)               __define_initcall("1",fn,1)
 179#define core_initcall_sync(fn)          __define_initcall("1s",fn,1s)
 180#define postcore_initcall(fn)           __define_initcall("2",fn,2)
 181#define postcore_initcall_sync(fn)      __define_initcall("2s",fn,2s)
 182#define arch_initcall(fn)               __define_initcall("3",fn,3)
 183#define arch_initcall_sync(fn)          __define_initcall("3s",fn,3s)
 184#define subsys_initcall(fn)             __define_initcall("4",fn,4)
 185#define subsys_initcall_sync(fn)        __define_initcall("4s",fn,4s)
 186#define fs_initcall(fn)                 __define_initcall("5",fn,5)
 187#define fs_initcall_sync(fn)            __define_initcall("5s",fn,5s)
 188#define rootfs_initcall(fn)             __define_initcall("rootfs",fn,rootfs)
 189#define device_initcall(fn)             __define_initcall("6",fn,6)
 190#define device_initcall_sync(fn)        __define_initcall("6s",fn,6s)
 191#define late_initcall(fn)               __define_initcall("7",fn,7)
 192#define late_initcall_sync(fn)          __define_initcall("7s",fn,7s)
 193
 194#define __initcall(fn) device_initcall(fn)
 195
 196#define __exitcall(fn) \
 197        static exitcall_t __exitcall_##fn __exit_call = fn
 198
。。。。。。。。。
 239#endif /* __ASSEMBLY__ */
 240
 241/**
 242 * module_init() - driver initialization entry point
 243 * @x: function to be run at kernel boot time or module insertion
 244 * 
 245 * module_init() will either be called during do_initcalls() (if
 246 * builtin) or at module insertion time (if a module).  There can only
 247 * be one per module.
 248 */
 249#define module_init(x)  __initcall(x);
 250
 251/**
 252 * module_exit() - driver exit entry point
 253 * @x: function to be run when driver is removed
 254 * 
 255 * module_exit() will wrap the driver clean-up code
 256 * with cleanup_module() when used with rmmod when
 257 * the driver is a module.  If the driver is statically
 258 * compiled into the kernel, module_exit() has no effect.
 259 * There can only be one per module.
 260 */
 261#define module_exit(x)  __exitcall(x);
 262
 263#else /* MODULE */

各种xx_core_initcall被定义到了不同的分级的段中
所以arch_initcall == __initcall_fn3 它将被链接器放于section  .initcall3.init. 中

module_init()==__initcall(fn)==device_initcall(fn)== __initcall_fn6

各个段的优先级由链接脚本定义

#define INITCALLS       \
   *(.initcall0.init)      \
   *(.initcall0s.init)      \
   *(.initcall1.init)      \
   *(.initcall1s.init)      \
   *(.initcall2.init)      \
   *(.initcall2s.init)      \
   *(.initcall3.init)      \
   *(.initcall3s.init)      \
   *(.initcall4.init)      \
   *(.initcall4s.init)      \
   *(.initcall5.init)      \
   *(.initcall5s.init)      \
 *(.initcallrootfs.init)      \
   *(.initcall6.init)      \
   *(.initcall6s.init)      \
   *(.initcall7.init)      \
   *(.initcall7s.init)

这个__initcall_start是在文件arch/xxx/kernel/vmlinux.lds.S定义的:
__initcall_start = .;
   INITCALLS
  __initcall_end = .;


664static void __init do_initcalls(void)
 665{
 666        initcall_t *call;
 667        int count = preempt_count();
 668
 669        for (call = __initcall_start; call < __initcall_end; call++) {
.。。。。
 682
 683                result = (*call)();
 684
。。。 }               
 720        /* Make sure there is no pending stuff from the initcall sequence */
 721        flush_scheduled_work();
 722}

因此__initcall_fnx,数字越小,越先被调用,故arch_initcall优先于module_init所修饰的函数。

arch_initcall修饰的函数的调用顺序如下:
start_kernel  》 rest_init(在setup_arch之后)  》 kernel_init  》 do_basic_setup》do_initcalls(在driver_init()之后) ,因为platform_bus_init在此之前已经初始化完毕了,便可将设备挂接到总线上了。

8.4    定义platform_driver
Platform bus和设备都定义好了后,需要定义一个platform driver用来驱动此设备。

对于设备来说:
290struct platform_device s3c_device_i2c = {
 291        .name             = "s3c2410-i2c",
 292        .id               = -1,
 293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),
 294        .resource         = s3c_i2c_resource,
 295};
 296
 297EXPORT_SYMBOL(s3c_device_i2c);

根据platform总线上device和driver的匹配规则可知,I2C 的platform driver的名字是s3c2410-i2c。


903/* device driver for platform bus bits */
 904
 905static struct platform_driver s3c2410_i2c_driver = {
 906        .probe          = s3c24xx_i2c_probe,
 907        .remove         = s3c24xx_i2c_remove,
 908        .resume         = s3c24xx_i2c_resume,
 909        .driver         = {
 910                .owner  = THIS_MODULE,
 911                .name   = "s3c2410-i2c",
 912        },
 913};

8.5    注册platform_driver


925static int __init i2c_adap_s3c_init(void)
 926{
 927        int ret;
 928
 929        ret = platform_driver_register(&s3c2410_i2c_driver);
 930        if (ret == 0) {
 931                ret = platform_driver_register(&s3c2440_i2c_driver);
 932                if (ret)
 933                        platform_driver_unregister(&s3c2410_i2c_driver);
 934        }
 935
 936        return ret;
 937}
 938

945module_init(i2c_adap_s3c_init);
 946module_exit(i2c_adap_s3c_exit);

在i2c_adap_s3c_init中注册s3c2410_i2c_driver,那么i2c_adap_s3c_init何时执行的呢?module_init(i2c_adap_s3c_init)表明其存放在initcall段,调用顺序如下:
init/main.c
start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》do_initcalls,因为platform_bus_init在此之前已经初始化完毕了,且设备已经注册到内核中了,驱动将和内核绑定,并最终调用s3c24xx_i2c_probe。

748/* s3c24xx_i2c_probe
 749 *
 750 * called by the bus driver when a suitable device is found
 751*/
 752
 753static int s3c24xx_i2c_probe(struct platform_device *pdev)
 754{
 755        struct s3c24xx_i2c *i2c = &s3c24xx_i2c;
 756        struct resource *res;
 757        int ret;
 758
 759        /* find the clock and enable it */
 760
 761        i2c->dev = &pdev->dev;
 762        i2c->clk = clk_get(&pdev->dev, "i2c");
 763        if (IS_ERR(i2c->clk)) {
 764                dev_err(&pdev->dev, "cannot get clock\n");
 765                ret = -ENOENT;
 766                goto err_noclk;
 767        }
 768
 769        dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);
 770
 771        clk_enable(i2c->clk);
 772
 773        /* map the registers */
 774
 775        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 776        if (res == NULL) {
 777                dev_err(&pdev->dev, "cannot find IO resource\n");
 778                ret = -ENOENT;
 779                goto err_clk;
 780        }
 781
 782        i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1,
 783                                         pdev->name);
 784
 785        if (i2c->ioarea == NULL) {
 786                dev_err(&pdev->dev, "cannot request IO\n");
 787                ret = -ENXIO;
 788                goto err_clk;
 789        }
 790
 791        i2c->regs = ioremap(res->start, (res->end-res->start)+1);
 792
 793        if (i2c->regs == NULL) {
 794                dev_err(&pdev->dev, "cannot map IO\n");
 795                ret = -ENXIO;
 796                goto err_ioarea;
 797        }
 798
 799        dev_dbg(&pdev->dev, "registers %p (%p, %p)\n", i2c->regs, i2c->ioarea, res);
 800
 801        /* setup info block for the i2c core */
 802
 803        i2c->adap.algo_data = i2c;
 804        i2c->adap.dev.parent = &pdev->dev;
 805
 806        /* initialise the i2c controller */
 807
 808        ret = s3c24xx_i2c_init(i2c);
 809        if (ret != 0)
 810                goto err_iomap;
 811
 812        /* find the IRQ for this unit (note, this relies on the init call to
 813         * ensure no current IRQs pending 
 814         */
 815
 816        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 817        if (res == NULL) {
 818                dev_err(&pdev->dev, "cannot find IRQ\n");
 819                ret = -ENOENT;
 820                goto err_iomap;
 821        }
 822
 823        ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,
 824                          pdev->name, i2c);
 825
 826        if (ret != 0) {
 827                dev_err(&pdev->dev, "cannot claim IRQ\n");
 828                goto err_iomap;
 829        }
 830
 831        i2c->irq = res;
 832                
 833        dev_dbg(&pdev->dev, "irq resource %p (%lu)\n", res,
 834                (unsigned long)res->start);
 835
 836        ret = i2c_add_adapter(&i2c->adap);
 837        if (ret < 0) {
 838                dev_err(&pdev->dev, "failed to add bus to i2c core\n");
 839                goto err_irq;
 840        }
 841
 842        platform_set_drvdata(pdev, i2c);
 843
 844        dev_info(&pdev->dev, "%s: S3C I2C adapter\n", i2c->adap.dev.bus_id);
 845        return 0;
 846
 847 err_irq:
 848        free_irq(i2c->irq->start, i2c);
 849
 850 err_iomap:
 851        iounmap(i2c->regs);
 852
 853 err_ioarea:
 854        release_resource(i2c->ioarea);
 855        kfree(i2c->ioarea);
 856
 857 err_clk:
 858        clk_disable(i2c->clk);
 859        clk_put(i2c->clk);
 860
 861 err_noclk:
 862        return ret;
 863}

当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:
struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);
根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。
struct int platform_get_irq(struct platform_device *dev, unsigned int num);
获取资源中的中断号。
struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name);
根据参数name所指定的名称,来获取指定的资源。
int platform_get_irq_byname(struct platform_device *dev, char *name);
根据参数name所指定的名称,来获取资源中的中断号。

此probe函数获取物理IO空间,通过request_mem_region和ioremap等操作物理地址转换成内核中的虚拟地址,初始化I2C控制器,通过platform_get_irq或platform_get_resource得到设备的中断号以后,就可以调用request_irq函数来向系统注册中断,并将此I2C控制器添加到系统中。

8.6    操作设备
进行了platform_device_register 和platform_driver_register后,驱动的相应信息就出现在sys目录的相应文件夹下,然后,我们该如何调用设备呢??怎么对设备进行打开读写等操作呢???

Platform总线只是为了方便管理挂接在CPU总线上的设备,与用户空间的交互,如读写还是需要利用file_operations。当然如果此platform设备无需和用户空间交互,则无需file_operations实例。

对于I2C总线来说,其file_operations如下:

 478static const struct file_operations i2cdev_fops = {
 479        .owner          = THIS_MODULE,
 480        .llseek         = no_llseek,
 481        .read           = i2cdev_read,
 482        .write          = i2cdev_write,
 483        .ioctl          = i2cdev_ioctl,
 484        .open           = i2cdev_open,
 485        .release        = i2cdev_release,
 486};

其和platform bus的区别在于,platform bus提供机制访问I2C 控制器本身的资源,而I2C总线提供访问I2C 控制器上挂接的I2C设备的机制。

阅读(1714) | 评论(0) | 转发(0) |
0

上一篇:I2C

下一篇:硬件总线接口系列-I2C

给主人留下些什么吧!~~