全部博文(73)
分类: C/C++
2009-04-24 10:28:32
本函数影响由fd参数引用的一个打开的文件。
#include
#include
int ioctl( int fd, int request, .../* void *arg */ );
返回0:成功 -1:出错
第三个参数总是一个指针,但指针的类型依赖于request参数。
我们可以把和网络相关的请求划分为6类:
套接口操作
文件操作
接口操作
ARP高速缓存操作
路由表操作
流系统
下表列出了网络相关ioctl请求的request参数以及arg地址必须指向的数据类型:
类别 |
Request |
说明 |
数据类型 |
套 接 口 |
SIOCATMARK SIOCSPGRP SIOCGPGRP |
是否位于带外标记 设置套接口的进程ID或进程组ID 获取套接口的进程ID或进程组ID |
int int int |
文 件 |
FIONBIN FIOASYNC FIONREAD FIOSETOWN FIOGETOWN |
设置/清除非阻塞I/O标志 设置/清除信号驱动异步I/O标志 获取接收缓存区中的字节数 设置文件的进程ID或进程组ID 获取文件的进程ID或进程组ID |
int int int int int |
接 口 |
SIOCGIFCONF SIOCSIFADDR SIOCGIFADDR SIOCSIFFLAGS SIOCGIFFLAGS SIOCSIFDSTADDR SIOCGIFDSTADDR SIOCGIFBRDADDR SIOCSIFBRDADDR SIOCGIFNETMASK SIOCSIFNETMASK SIOCGIFMETRIC SIOCSIFMETRIC SIOCGIFMTU SIOCxxx |
获取所有接口的清单 设置接口地址 获取接口地址 设置接口标志 获取接口标志 设置点到点地址 获取点到点地址 获取广播地址 设置广播地址 获取子网掩码 设置子网掩码 获取接口的测度 设置接口的测度 获取接口MTU (还有很多取决于系统的实现) |
struct ifconf struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq |
ARP |
SIOCSARP SIOCGARP SIOCDARP |
创建/修改ARP表项 获取ARP表项 删除ARP表项 |
struct arpreq struct arpreq struct arpreq |
路 由 |
SIOCADDRT SIOCDELRT |
增加路径 删除路径 |
struct rtentry struct rtentry |
流 |
I_xxx |
|
|
套接口操作:
明确用于套接口操作的ioctl请求有三个,它们都要求ioctl的第三个参数是指向某个整数的一个指针。
SIOCATMARK: 如果本套接口的的度指针当前位于带外标记,那就通过由第三个参数指向的整数返回一个非0值;否则返回一个0值。POSIX以函数sockatmark替换本请求。
SIOCGPGRP: 通过第三个参数指向的整数返回本套接口的进程ID或进程组ID,该ID指定针对本套接口的SIGIO或SIGURG信号的接收进程。本请求和fcntl的F_GETOWN命令等效,POSIX标准化的是fcntl函数。
SIOCSPGRP: 把本套接口的进程ID或者进程组ID设置成第三个参数指向的整数,该ID指定针对本套接口的SIGIO或SIGURG信号的接收进程,本请求和fcntl的F_SETOWN命令等效,POSIX标准化的是fcntl操作。
文件操作:
以下5个请求都要求ioctl的第三个参数指向一个整数。
FIONBIO: 根据ioctl的第三个参数指向一个0或非0值分别清除或设置本套接口的非阻塞标志。本请求和O_NONBLOCK文件状态标志等效,而该标志通过fcntl的F_SETFL命令清除或设置。
FIOASYNC: 根据iocl的第三个参数指向一个0值或非0值分别清除或设置针对本套接口的信号驱动异步I/O标志,它决定是否收取针对本套接口的异步I/O信号(SIGIO)。本请求和O_ASYNC文件状态标志等效,而该标志可以通过fcntl的F_SETFL命令清除或设置。
FIONREAD: 通过由ioctl的第三个参数指向的整数返回当前在本套接口接收缓冲区中的字节数。本特性同样适用于文件,管道和终端。
FIOSETOWN: 对于套接口和SIOCSPGRP等效。
FIOGETOWN: 对于套接口和SIOCGPGRP等效。
接口配置:
得到系统中所有接口由SIOCGIFCONF请求完成,该请求使用ifconf结构,ifconf又使用ifreq
结构,如下所示:
Struct ifconf{
int
ifc_len;
// 缓冲区的大小
union{
caddr_t
ifcu_buf; // input from
user->kernel
struct ifreq *ifcu_req;
// return of structures returned
}ifc_ifcu;
};
#define ifc_buf ifc_ifcu.ifcu_buf //buffer
address
#define ifc_req ifc_ifcu.ifcu_req //array of
structures returned
#define IFNAMSIZ 16
struct ifreq{
char ifr_name[IFNAMSIZ];
// interface name, e.g., “le
union{
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;
}ifr_ifru;
};
#define ifr_addr
ifr_ifru.ifru_addr
// address
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
// otner end of p-to-p link
#define ifr_broadaddr ifr_ifru.ifru_broadaddr //
broadcast address
#define ifr_flags ifr_ifru.ifru_flags
// flags
#define ifr_metric
ifr_ifru.ifru_metric // metric
#define ifr_data
ifr_ifru.ifru_data // for use by
interface
再调用ioctl前我们必须先分撇一个缓冲区和一个ifconf结构,然后才初始化后者。如下图
展示了一个ifconf结构的初始化结构,其中缓冲区的大小为1024,ioctl的第三个参数指向
这样一个ifconf结构。
ifc_len |
Ifc_buf |
1024
--------------------->缓存
假设内核返回2个ifreq结构,ioctl返回时通过同一个ifconf结构缓冲区填入了那2个ifreq结构,ifconf结构的ifc_len成员也被更新,以反映存放在缓冲区中的信息量
一般来讲ioctl在用户程序中的调用是:
ioctl(int fd,int command, (char*)argstruct)
ioctl调用与网络编程有关(本文只讨论这一点),文件描述符fd实际上是由socket()系统调用返回的。参数command的取值由/usr/include/linux/sockios.h所规定。这些command的由于功能的不同,可分为以下几个小类:
• 改变路由表 (例如 SIOCADDRT,
SIOCDELRT),
• 读/更新 ARP/RARP 缓存(如:SIOCDARP, SIOCSRARP),
• 一般的与网络接口有关的(例如 SIOCGIFNAME,
SIOCSIFADDR 等等)
在Gooodies 目录下有很多样例程序展示了如何使用ioctl。当你看这些程序时,注意参数argstruct是与参数command相关的。
例如,
与路由表相关的 ioctl使用rtentry这种结构,rtentry定义在/usr/include/linux/route.h(参见例子 adddefault.c)。
与ARP有关的ioctl调用使用arpreq结构,arpreq定义在 /usr/include/linux/if_arp.h(参见例子arpread.c).
与网络接口有关的ioctl调用使用的command参数通常看起来像SIOCxIFyyyy的形式,这里x要 么是S(设定set,写write),要么是G(得到get,读read)。在getifinfo.c程序中就使用了这种形式的command参数来读 IP地址,硬件地址,广播地址和得到与网络接口有关的一些标志(flag)。
在这些ioctl调用中,第三个参数是ifreq结构,它在 /usr/include/linux/if.h中定义。在某些情况下,ioctrl调用可能会使用到在sockios.h之外的新的定义,例如,WaveLAN无线网络卡会保存有关无线网络信号强度的信息,这对用户的程序可能有用。但用户怎么得到这种信息呢?我们的第一个本能是在sockios.h中定义新的ioctl命令,例如SIOCGIFWVLNSS(它的英文缩写表
示WaveLAN的信号强度)。但不幸的是,这种命令不是对所有其他的网络接口(例如:loopback环回接口)有意义,而且不应当允许对于 WAVLAN卡以外的网络接口使用ioctl命令。那么,我们需要的是这样一种机制:它能够定义一种与网络接口相关的ioctl命令。幸运的是,在 Linux操作系统中已经为实现这个目的内建了一种挂钩(hook)机制。当你再次看sockios.h文件时,你将发现每一种设备已经预先定义了 SIOCDEVPRIVATE的ioctl命令。而它的实现将留给开发相应驱动程序的人去完成。
通常,一个用户程序使用ioctl
(sockid,SIOCDEVPRIVATE,(char*)&ifr)来调用与某种设备(指像WaveLAN那样的特殊设备)相关的 ioctl命令,这里ifr是struct
ifreq ifr形式的变量。用户程序应当在ifr.ifr_name中填充与这个设备相关的名字,例如,假设WaveLAN使用的接口号为eth1。一般的,一个用户程序还需要与内核互相交换ioctl的command参数和结果,这可以通过ifr.ifr_data这个变量来实现,例如,想得到WaveLAN中 表示信号强度的信息时,可以通过返回这个变量来实现。Linux的源代码已经包括了两种设备de4x5和ewrk3,它们定义并且实现了特定的ioctl调用。这两个设备的源代码在de4x5.h,de4x5.c,ewrk3.h,ewrk3.c中(在
/usr/src/linux/drivers/net/目录中)。这两种设备都定义了它们特有的结构(struct
ewrk3_ioctl 和 struct de4x5_ioctl)来方便用户程序和设备驱动之间交换信息。每次调用ioctl前,用户程序应当在相应的结构变量中设定合适的初值,并且将
ifr.ifr_data指向该值。
在我们进一步讨论ewrk3和de4x5的代码前,让我们仔细看看ioctl调用是如何一步步地实现的。所有的和接口相关的ioctl请求 (SIOCxIFyyyy 和 SIOCDEVPRIVATE)将会调用dev_ioctl()(在/usr/src/linux/net/core/dev.c中)。但这只是一个包装器(wrapper),实际的动作将由dev_ifsioc()(也在dev.c中)来实现。差不多dev_ioctl()这个函数所做的所有工作只是检查这个调用是否已经有了正当的权限(例如,改变路由表需要有root的权限)。而dev_ifsioc()这个函数首先要做的一些事情包括得到与 ifr.ifr_name相匹配的设备的结构(在/usr/include/linux/netdevice.h中定义)。但这是在实现特定的接口命令
(例如:SIOCGIFADDR)之后。这些特定的接口命令被放置到一个巨大的switch语句之中。其中SIOCDEVPRIVATE命令和其他的在 0x
所以,如果要实现一个与设备相关的ioctl命令,所要做的只是编写一个与这个设备相关的ioctl句柄,并且将表示这个设备的结构变量中do_ioctl部分指向这个句柄。对于ewrk3这个设备,它的句柄是ewrk3_ioctl()(在ewrk3.c里面)并且相应的表示该设备的结构变量由ewrk3_init()来初始化。在ewrk3_ioctl()的代码中清晰的指出ifr.ifr_data是用作设备驱动程序和用户程序之间交换信息的。注意,这部分的内存可以双向的交流信息。例如,在ewrk3的驱动程序代码中,if.ifr_data的头两个字节是用来表示特殊的动作(例如,EWRK3_SET_PROM,EWRK3_CLR_PROM),而这个动作是符合使用者(驱动程序实现了多个与设备相关的、由 SIOCDEVPRIVATE调用的命令)的要求的。另外,ifr.ifr_data中第5个字节指向的缓冲区(buffer)被用来交换其他的信息 (如:当使用EWRK3_SET_HWADDR和EWRK3_GET_HWADDR时为硬件地址)
在你深入ewrk3_ioctl()时,请注意一般情况下一个用户进程不能直接访问内核所在的内存。为此,驱动开发者可以使用两个特殊的函数memcpy_tofs()和memcpy_fromfs()。内核函数memcpy_tofs(arg1, arg2, arg3) 从地址arg2(用户空间)向地址arg1(内核空间)拷贝arg3个字节。类似的,memcpy_fromfs(arg1,arg2,arg3)从地址 arg2(用户空间)向地址arg1(内核空间)拷贝arg3个字节。在这些调用之前,verify_area()将会检查这个进程是否拥有合适的访问权限。另外,注意使用printk()函数可以输出debug信息。这个函数与printf()函数类似,但不能处理浮点类型的数。内核代码不能够使用 printf()函数。printk()函数产生的结果将记录在/usr/adm/messages里。如果想知道更多的关于这些函数的或者与它们相关的信息,可以参考《Linux Kernel Hacker’s Guide》(在Linux文档网站的首页)
这本书中Supporting Functions部分。