分类: C/C++
2012-06-20 07:58:13
在计算机视觉中,对图像进行二值化恐怕是最常见的操作了。为了检测目标,可能需要对每一帧图像的每一个像素点进行运算。如果能提升二值化的速度,那么,你的算法的效率就会大大的提高。本文,将介绍一种超级快速的图像二值化技术。
要解决的问题:
图3d-space-in-thresholding1.jpg
如图3d-space-in-thresholding1.jpg所示,需要把彩色图像中,
(1)R通道介于(smoevalue1,somevalue2)
(2)G通道介于(somevalue3,somevalue4),
(3)B通道介于(somevalue5,somevalue6),
当图像中某个像素点同时满足上面3个条件时,将该像素点置为白色,否则置为黑色
(1)常用方法介绍
常用的二值化方法,需要判断每一个通道的值是否在某个范围之内。伪代码如下:
if (redcomponent > somevalue1 &&
redcomponent < somevalue2 &&
greencomponent > somevalue3 &&
greencomponent < somevalue4 &&
bluecomponent > somevalue5 &&
bluecomponent < somevalue6)
{
// 将该像素点置为白色
}
else
{
将该像素点置为黑色
}
问题是,每个像素点的判断,需要6次比较操作,太复杂了。
(2)新方法
方法(1)中,对每一个通道都需要比较两次。为了提高速度,需要减少比较次数。
为B、G、R三个通道,每个通道创建一个大小为256的数组。该数组中的初始值,
例如R通道的数组,其在somevalue1到somevalue2,数组中的值是1,其他都是0;
G通道的数组,其在somevalue3到somevalue4,数组中的值是1,其他都是0;
B通道的数组,其在somevalue5到somevalue6,数组中的值是1,其他都是0。
如图tables.jpg所示:
现在,如果要判断某个像素点应该标记为白色还是为黑色,只需要查询数组即可。伪代码如下:
if(table_red[redcomponent] &&
table_green[greencomponent] &&
table_blue[bluecomonent])
{
// 将该像素点置为白色
}
else
{
将该像素点置为黑色
}
如果redcomponent的值介于(smoevalue1,somevalue2),那么table_red[redcomponent]=1,如果不在这个范围,那么table_red[redcomponent]=0.其他两个通道的值,也是同理。所以,如果条件(table_red[redcomponent] && table_green[greencomponent] && table_blue[bluecomonent])成立,就表示满足问题中的那3个条件。
(3)对方法2的扩展
在方法2中,数组中只保存1或者0,这只需要一个bit 就ok了,如果上述的数组是int型(假设是32位),那么只是用了一个bit,还有31个bit没有是用,那么,其他的31个bit都可以表示一种颜色,就可以实现同时处理32种颜色了。
(4)效率的对比
图像大小(像素点个数) 方法1(ms) 方法2(ms)
73902 1.278624 0.394651
636000 5.791450 2.213925
1555200 13.664513 5.687084
通过实验,可以发现,方法2的速度快了300%。如果是用SIMD指令,速度会更快。
总评:典型的空间换时间 简单实用 不错
转自: