Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2974605
  • 博文数量: 523
  • 博客积分: 11908
  • 博客等级: 上将
  • 技术积分: 5475
  • 用 户 组: 普通用户
  • 注册时间: 2009-04-03 15:50
文章分类

全部博文(523)

文章存档

2019年(3)

2013年(4)

2012年(71)

2011年(78)

2010年(57)

2009年(310)

分类:

2010-12-21 11:42:38

RFID系统的分类方法:

1、电磁场的耦合方式按照其波长和通信距离的关系分为近场和远场。上一节已经讨论了近场远场的原理,这里不做赘述。

2、按照应答器的供电方式分为有源和无源。RFID标签分为主动标签(Active tags)和被动标签(Passive tags)两种。主动标签由于其自身有能量提供,因此可以无需阅读器提供能量。主动标签自身带有电池供电,读/写距离较远同时体积较大,与被动标签相比成本更高,也称为有源标签。

被动标签由阅读器产生的磁场中获得工作所需的能量,成本很低并具有很长的使用寿命,比主动标签更小也更轻,读写距离则较近,也称为无源标签。

二者的性能比较如下表:

 

能量供应

工作环境

寿命

尺寸

成本

读写距离

读写速度

主动标签

内装电池

高低温下电池无法工作

电池无法更换,寿命受限

大、厚、重

被动标签

无源,利用电磁场获取能量

高低温下电池无法工作

寿命更长,免维护

小、薄、轻

 

3、按照系统使用电磁波的频率分为LF,HF,UHF以及MW微波系统,主要是根据通信信道使用的载波的频率来区分的。射频识别应用占据的频段或频点在国际上有公认的划分,即位于ISM波段之中。典型的工作频率有:125kHz,133kHz,13.56MHz,27.12MHz,433MHz,902~928MHz,2.45GHz, 5.8GHz等。

低频段射频标签,简称为低频标签,其工作频率范围为30kHz ~ 300kHz。典型工作频率有:125KHz,133KHz。低频标签一般为无源标签,其工作能量通过电感耦合方式从阅读器耦合线圈的辐射近场中获得。低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于1米。

低频标签的典型应用有:动物识别、容器识别、工具识别、电子闭锁防盗(带有内置应答器的汽车钥匙)等。与低频标签相关的国际标准有:ISO11784/11785(用于动物识别)、ISO18000-2(125-135 kHz)。低频标签有多种外观形式,应用于动物识别的低频标签外观有:项圈式、耳牌式、注射式、药丸式等。典型应用的动物有牛、信鸽等。

低频标签的主要优势体现在:标签芯片一般采用普通的CMOS工艺,具有省电、廉价的特点;工作频率不受无线电频率管制约束;可以穿透水、有机组织、木材等;非常适合近距离的、低速度的、数据量要求较少的识别应用(例如:动物识别)等。

低频标签的劣势主要体现在:标签存贮数据量较少;只能适合低速、近距离识别应用;与高频标签相比:标签天线匝数更多,成本更高一些;

中高频段射频标签的工作频率一般为3MHz ~ 30MHz。典型工作频率为:13.56MHz。该频段的射频标签,从射频识别应用角度来说,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,如表2.2所示,所以也常将其称为高频标签。鉴于该频段的射频标签可能是实际应用中最大量的一种射频标签,因而我们只要将高、低理解成为一个相对的概念,即不会在此造成理解上的混乱。为了便于叙述,我们将其称为中频射频标签。

中频标签一般也采用无源设主,其工作能量同低频标签一样,也是通过电感(磁)耦合方式从阅读器耦合线圈的辐射近场中获得。标签与阅读器进行数据交换时,标签必须位于阅读器天线辐射的近场区内。中频标签的阅读距离一般情况下也小于1米。

中频标签由于可方便地做成卡状,典型应用包括:电子车票、电子身份证、电子闭锁防盗(电子遥控门锁控制器)等。相关的国际标准有:ISO14443、ISO15693、ISO18000-3(13.56MHz)等。

中频标准的基本特点与低频标准相似,由于其工作频率的提高,可以选用较高的数据传输速率。射频标签天线设计相对简单,标签一般制成标准卡片形状。

超高频与微波频段的射频标签,简称为微波射频标签,其典型工作频率为:433.92MHz,862(902)~928MHz,2.45GHz, 5.8GHz。微波射频标签可分为有源标签与无源标签两类。工作时,射频标签位于阅读器天线辐射场的远区场内,标签与阅读器之间的耦合方式为电磁耦合方式。阅读器天线辐射场为无源标签提供射频能量,将有源标签唤醒。相应的射频识别系统阅读距离一般大于1m,典型情况为4~6m,最大可达10m以上。阅读器天线一般均为定向天线,只有在阅读器天线定向波束范围内的射频标签可被读/写。

由于阅读距离的增加,应用中有可能在阅读区域中同时出现多个射频标签的情况,从而提出了多标签同时读取的需求,进而这种需求发展成为一种潮流。目前,先进的射频识别系统均将多标签识读问题作为系统的一个重要特征。

以目前技术水平来说,无源微波射频标签比较成功产品相对集中在902~928MHz工作频段上。2.45GHz和5.8GHz射频识别系统多以半无源微波射频标签产品面世。半无源标签一般采用钮扣电池供电,具有较远的阅读距离。

微波射频标签的典型特点主要集中在是否无源、无线读写距离、是否支持多标签读写、是否适合高速识别应用,读写器的发射功率容限,射频标签及读写器的价格等方面。典型的微波射频标签的识读距离为3~5m,个别有达10m或10m以上的产品。对于可无线写的射频标签而言,通常情况下,写入距离要小于识读距离,其原因在于写入要求更大的能量。

微波射频标签的数据存贮容量一般限定在2Kbits以内,再大的存贮容量是乎没有太大的意义,从技术及应用的角度来说,微波射频标签并不适合作为大量数据的载体,其主要功能在于标识物品并完成无接触的识别过程。典型的数据容量指标有:1Kbits,128Bits,64Bits等。由Auto-ID Center制定的产品电子代码EPC的容量为:90Bits。

微波射频标签的典型应用包括:移动车辆识别、电子身份证、仓储物流应用、电子闭锁防盗(电子遥控门锁控制器)等。相关的国际标准有:ISO10374,ISO18000-4(2.45GHz)、-5(5.8GHz)、-6(860-930 MHz)、-7(433.92 MHz),ANSI NCITS256-1999等。

4、按照阅读器与电子标签之间的通信载波频率可以分为广播发射式、倍频式和反射调制式系统。

广播发射式射频识别系统实现起来最简单。这时电子标签必须采用有源方式工作,并实时将其贮存的标识信息向外广播,阅读器相当于一个只收不发的接收机。这种系统的缺点是电子标签因须不停地向外发射信息,对其自身而言费电,对环境而言造成电磁污染,同时系统不具备安全保密性。

倍频式射频识别系统实现起来有一定难度。一般情况下,阅读器发出射频查询信号,电子标签返回的信号载频为阅读器发出射频的倍频。这种工作模式对阅读器接收处理回波信号提供了便利,但是,对无源电子标签来说,电子标签将收到的阅读器发来的射频能量转换为倍频回波载频时,其能量转换效率较低,提高转换效率需要较高的微波技巧,这就意味着更高的电子标签成本。同时这种系统工作须占用两个工作频点,一般较难获得无线电频率管理委员会的产品应用许可。

反射调制式射频识别系统实现起来要解决同频收发问题。系统工作时,阅读器发出微波查询(能量)信号,电子标签(无源)收到微波查询能量信号后将其一部分整流为直流电源供电子标签内的电路工作,另一部分微波能量信号被电子标签内保存的数据信息调制后反射回阅读器。阅读器接收反射回来的调制信号,从中提取出电子标签中保存的标识性数据信息。系统工作过程中,阅读器发出微波信号与接收反射回的幅度调制信号是同时进行的。反射回的信号强度较发射信号要弱得多,因此技术实现上的难点在于同频接收。

5、从电子标签内保存的信息注入的方式可将其为分集成电路固化式、现场有线改写式和现场无线改写式三大类。

集成固化式电子标签内的信息一般在集成电路生产时即将信息以ROM工艺模式注入,其保存的信息是一成不变的;现场有线改写式电子标签一般将电子标签保存的信息写入其内部的存储区中,改写时需要专用的编程器或写入器,改写过程中必须为其供电;现场无线改写式电子标签一般适用于有源类电子标签,具有特定的改写指令,电子标签内保存的信息也位于其中的存储区。
阅读(1184) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~