本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝,转载,转载时请保持文档的完整性,严禁用于任何商业用途。
msn:
来源:
http://yfydz.cublog.cn
6. IPVS的连接管理
和netfilter的连接类似,IPVS的连接管理是IPVS的一个重要组成部分,但相对来说IPVS的连接比netfilter的连接要简单一些。
6.1 连接五元组
要实现面向连接的处理的基本功能就是根据数据包内容查找连接,IPVS区分每个连接的关键数据和netfilter一样是五元组,为IP协议、
源地址、源端口、目的地址和目的端口,不过没定义方向的概念,所以在IPVS中请求方向和回应方向要用不同的查找函数处理,由于IPVS是在INPUT点
处理请求,在FORWARD点处理回应包,不会在同一个点同时处理请求包和回应包,因此可以没有方向的概念。
进入方向:
/*
* Gets ip_vs_conn associated with supplied parameters in the ip_vs_conn_tab.
* Called for pkts coming from OUTside-to-INside.
* s_addr, s_port: pkt source address (foreign host)
* d_addr, d_port: pkt dest address (load balancer)
*/
static inline struct ip_vs_conn *__ip_vs_conn_in_get
(int protocol, __u32 s_addr, __u16 s_port, __u32 d_addr, __u16 d_port)
{
unsigned hash;
struct ip_vs_conn *cp;
// 入(请求)方向计算HASH值是用源的三元组来计算:IP协议、源地址、源端口
hash = ip_vs_conn_hashkey(protocol, s_addr, s_port);
ct_read_lock(hash);
list_for_each_entry(cp, &ip_vs_conn_tab[hash], c_list) {
// caddr,cport是连接记录的客户端的地址和端口
if (s_addr==cp->caddr && s_port==cp->cport &&
d_port==cp->vport && d_addr==cp->vaddr &&
// 连接中的客户端端口为0的情况,不过基本不可能
((!s_port) ^ (!(cp->flags & IP_VS_CONN_F_NO_CPORT))) &&
protocol==cp->protocol) {
/* HIT */
// 增加连接引用
atomic_inc(&cp->refcnt);
ct_read_unlock(hash);
return cp;
}
}
ct_read_unlock(hash);
return NULL;
}
struct ip_vs_conn *ip_vs_conn_in_get
(int protocol, __u32 s_addr, __u16 s_port, __u32 d_addr, __u16 d_port)
{
struct ip_vs_conn *cp;
cp = __ip_vs_conn_in_get(protocol, s_addr, s_port, d_addr, d_port);
if (!cp && atomic_read(&ip_vs_conn_no_cport_cnt))
// 正常查找没找到时以s_port为0重查一次
cp = __ip_vs_conn_in_get(protocol, s_addr, 0, d_addr, d_port);
IP_VS_DBG(9, "lookup/in %s %u.%u.%u.%u:%d->%u.%u.%u.%u:%d %s\n",
ip_vs_proto_name(protocol),
NIPQUAD(s_addr), ntohs(s_port),
NIPQUAD(d_addr), ntohs(d_port),
cp?"hit":"not hit");
return cp;
}
另外还有个获取连接模板的函数,没有s_port为0的特殊处理,在查找固定连接和模板连接时使用:
/* Get reference to connection template */
struct ip_vs_conn *ip_vs_ct_in_get
(int protocol, __u32 s_addr, __u16 s_port, __u32 d_addr, __u16 d_port)
{
unsigned hash;
struct ip_vs_conn *cp;
hash = ip_vs_conn_hashkey(protocol, s_addr, s_port);
ct_read_lock(hash);
list_for_each_entry(cp, &ip_vs_conn_tab[hash], c_list) {
if (s_addr==cp->caddr && s_port==cp->cport &&
d_port==cp->vport && d_addr==cp->vaddr &&
cp->flags & IP_VS_CONN_F_TEMPLATE &&
protocol==cp->protocol) {
/* HIT */
atomic_inc(&cp->refcnt);
goto out;
}
}
cp = NULL;
out:
ct_read_unlock(hash);
IP_VS_DBG(9, "template lookup/in %s %u.%u.%u.%u:%d->%u.%u.%u.%u:%d %s\n",
ip_vs_proto_name(protocol),
NIPQUAD(s_addr), ntohs(s_port),
NIPQUAD(d_addr), ntohs(d_port),
cp?"hit":"not hit");
return cp;
}
发出方向查找:
/*
* Gets ip_vs_conn associated with supplied parameters in the ip_vs_conn_tab.
* Called for pkts coming from inside-to-OUTside.
* s_addr, s_port: pkt source address (inside host)
* d_addr, d_port: pkt dest address (foreign host)
*/
struct ip_vs_conn *ip_vs_conn_out_get
(int protocol, __u32 s_addr, __u16 s_port, __u32 d_addr, __u16 d_port)
{
unsigned hash;
struct ip_vs_conn *cp, *ret=NULL;
/*
* Check for "full" addressed entries
*/
// 出方向计算HASH值是用目的三元组来计算:IP协议、目的地址和目的端口,
// 这样计算结果和入方向的计算值是相同的
hash = ip_vs_conn_hashkey(protocol, d_addr, d_port);
ct_read_lock(hash);
list_for_each_entry(cp, &ip_vs_conn_tab[hash], c_list) {
if (d_addr == cp->caddr && d_port == cp->cport &&
s_port == cp->dport && s_addr == cp->daddr &&
protocol == cp->protocol) {
/* HIT */
atomic_inc(&cp->refcnt);
ret = cp;
break;
}
}
ct_read_unlock(hash);
IP_VS_DBG(9, "lookup/out %s %u.%u.%u.%u:%d->%u.%u.%u.%u:%d %s\n",
ip_vs_proto_name(protocol),
NIPQUAD(s_addr), ntohs(s_port),
NIPQUAD(d_addr), ntohs(d_port),
ret?"hit":"not hit");
return ret;
}
6.2 连接HASH表
和netfilter一样,IPVS的连接表是通过HASH表来实现的,不过和netfilter不同的是该HASH表大小是固定的,可在内核内核参数时设置,而不是象netfitler那样是根据系统内存动态计算出来的:
// HASH表缺省大小是1<<12, 4096
/*
* IPVS connection entry hash table
*/
#ifndef CONFIG_IP_VS_TAB_BITS
#define CONFIG_IP_VS_TAB_BITS 12
#endif
// 内核配置时设置的话最小为1<<8, 最大为1<<20
/* make sure that IP_VS_CONN_TAB_BITS is located in [8, 20] */
#if CONFIG_IP_VS_TAB_BITS < 8
#define IP_VS_CONN_TAB_BITS 8
#endif
#if CONFIG_IP_VS_TAB_BITS > 20
#define IP_VS_CONN_TAB_BITS 20
#endif
#if 8 <= CONFIG_IP_VS_TAB_BITS && CONFIG_IP_VS_TAB_BITS <= 20
#define IP_VS_CONN_TAB_BITS CONFIG_IP_VS_TAB_BITS
#endif
#define IP_VS_CONN_TAB_SIZE (1 << IP_VS_CONN_TAB_BITS)
#define IP_VS_CONN_TAB_MASK (IP_VS_CONN_TAB_SIZE - 1)
连接HASH表数组在连接初始化函数中分配:
int ip_vs_conn_init(void)
{
......
ip_vs_conn_tab = vmalloc(IP_VS_CONN_TAB_SIZE*sizeof(struct list_head));
不过IPVS的连接读写锁不象netfilter那样只有一把,而是一个数组,通过连接HASH值取模后得到该连接对应的锁,这样读写连接时的冲突就会减少一些:
// 锁的数量是1<<4, 16把
/*
* Fine locking granularity for big connection hash table
*/
#define CT_LOCKARRAY_BITS 4
#define CT_LOCKARRAY_SIZE (1<#define CT_LOCKARRAY_MASK (CT_LOCKARRAY_SIZE-1)
struct ip_vs_aligned_lock
{
rwlock_t l;
} __attribute__((__aligned__(SMP_CACHE_BYTES)));
// 连接表锁数组
/* lock array for conn table */
static struct ip_vs_aligned_lock
__ip_vs_conntbl_lock_array[CT_LOCKARRAY_SIZE] __cacheline_aligned;
// 读写时用连接的HASH值和锁数量取模,就得到相应锁
static inline void ct_read_lock(unsigned key)
{
read_lock(&__ip_vs_conntbl_lock_array[key&CT_LOCKARRAY_MASK].l);
}
6.3 连接的建立
/*
* Create a new connection entry and hash it into the ip_vs_conn_tab
*/
struct ip_vs_conn *
ip_vs_conn_new(int proto, __u32 caddr, __u16 cport, __u32 vaddr, __u16 vport,
__u32 daddr, __u16 dport, unsigned flags,
struct ip_vs_dest *dest)
{
struct ip_vs_conn *cp;
struct ip_vs_protocol *pp = ip_vs_proto_get(proto);
// 从cache中分配连接
cp = kmem_cache_alloc(ip_vs_conn_cachep, GFP_ATOMIC);
if (cp == NULL) {
IP_VS_ERR_RL("ip_vs_conn_new: no memory available.\n");
return NULL;
}
memset(cp, 0, sizeof(*cp));
INIT_LIST_HEAD(&cp->c_list);
init_timer(&cp->timer);
cp->timer.data = (unsigned long)cp;
// 连接超时函数
cp->timer.function = ip_vs_conn_expire;
// 连接基本参数赋值
cp->protocol = proto;
cp->caddr = caddr;
cp->cport = cport;
cp->vaddr = vaddr;
cp->vport = vport;
cp->daddr = daddr;
cp->dport = dport;
// 连接标志,普通连接为0
// cport为0时为IP_VS_CONN_F_NO_CPORT
// 永久连接时为IP_VS_CONN_F_TEMPLATE
// 目的服务器dest为NULL时为IP_VS_CONN_F_BYPASS
cp->flags = flags;
spin_lock_init(&cp->lock);
/*
* Set the entry is referenced by the current thread before hashing
* it in the table, so that other thread run ip_vs_random_dropentry
* but cannot drop this entry.
*/
// 引用初始值为1
atomic_set(&cp->refcnt, 1);
// 子连接数置0
atomic_set(&cp->n_control, 0);
atomic_set(&cp->in_pkts, 0);
// 增加IPVS连接计数,其实最好在加入连接表时增加为好
atomic_inc(&ip_vs_conn_count);
if (flags & IP_VS_CONN_F_NO_CPORT)
atomic_inc(&ip_vs_conn_no_cport_cnt);
/* Bind the connection with a destination server */
// 将连接和目的服务器进行绑定
ip_vs_bind_dest(cp, dest);
/* Set its state and timeout */
// 连接初始状态为0
cp->state = 0;
// 缺省超时为3秒
cp->timeout = 3*HZ;
/* Bind its packet transmitter */
// 绑定连接的数据包的发送方法
ip_vs_bind_xmit(cp);
// 绑定协议应用,其实目前只有TCP的FTP一种,所以用了unlikely
if (unlikely(pp && atomic_read(&pp->appcnt)))
ip_vs_bind_app(cp, pp);
/* Hash it in the ip_vs_conn_tab finally */
// 将该连接节点加入到IPVS连接表中
ip_vs_conn_hash(cp);
// 返回了,奇怪的是始终没有add_timer()启动定时器
return cp;
}
绑定连接目的服务器:
/*
* Bind a connection entry with a virtual service destination
* Called just after a new connection entry is created.
*/
static inline void
ip_vs_bind_dest(struct ip_vs_conn *cp, struct ip_vs_dest *dest)
{
/* if dest is NULL, then return directly */
if (!dest)
return;
/* Increase the refcnt counter of the dest */
// 增加目的服务器的引用
atomic_inc(&dest->refcnt);
/* Bind with the destination and its corresponding transmitter */
// 根据服务器情况设置连接标志,主要是用来确定连接数据包的发送方法
cp->flags |= atomic_read(&dest->conn_flags);
// 指向目的服务器
cp->dest = dest;
IP_VS_DBG(7, "Bind-dest %s c:%u.%u.%u.%u:%d v:%u.%u.%u.%u:%d "
"d:%u.%u.%u.%u:%d fwd:%c s:%u conn->flags:%X conn->refcnt:%d "
"dest->refcnt:%d\n",
ip_vs_proto_name(cp->protocol),
NIPQUAD(cp->caddr), ntohs(cp->cport),
NIPQUAD(cp->vaddr), ntohs(cp->vport),
NIPQUAD(cp->daddr), ntohs(cp->dport),
ip_vs_fwd_tag(cp), cp->state,
cp->flags, atomic_read(&cp->refcnt),
atomic_read(&dest->refcnt));
/* Update the connection counters */
if (!(cp->flags & IP_VS_CONN_F_TEMPLATE)) {
/* It is a normal connection, so increase the inactive
connection counter because it is in TCP SYNRECV
state (inactive) or other protocol inacive state */
// 增加目的服务器的不活动连接计数,目前还属于不活动连接
atomic_inc(&dest->inactconns);
} else {
/* It is a persistent connection/template, so increase
the peristent connection counter */
// 如果是永久连接或模板,增加目的服务器的永久连接计数
atomic_inc(&dest->persistconns);
}
// 检查目的服务器的连接数是否超载了
if (dest->u_threshold != 0 &&
ip_vs_dest_totalconns(dest) >= dest->u_threshold)
dest->flags |= IP_VS_DEST_F_OVERLOAD;
}
绑定协议应用:
/*
* Bind ip_vs_conn to its ip_vs_app (called by cp constructor)
*/
int ip_vs_bind_app(struct ip_vs_conn *cp, struct ip_vs_protocol *pp)
{
// 调用协议的app_conn_bind成员函数,对TCP协议来说就是tcp_app_conn_bind()函数
// 只在NAT模式下有效
// 检查该端口是否属于某多连接应用协议,是的话连接上绑定该协议处理,
// 相当于netfilter的连接的helper
return pp->app_conn_bind(cp);
}
绑定发送方法:
/*
* Bind a connection entry with the corresponding packet_xmit.
* Called by ip_vs_conn_new.
*/
static inline void ip_vs_bind_xmit(struct ip_vs_conn *cp)
{
// 连接的发送方法标志是在和目的服务器绑定时设置的
switch (IP_VS_FWD_METHOD(cp)) {
case IP_VS_CONN_F_MASQ:
// NAT发送
cp->packet_xmit = ip_vs_nat_xmit;
break;
case IP_VS_CONN_F_TUNNEL:
// TUNNEL发送
cp->packet_xmit = ip_vs_tunnel_xmit;
break;
case IP_VS_CONN_F_DROUTE:
// DR发送
cp->packet_xmit = ip_vs_dr_xmit;
break;
case IP_VS_CONN_F_LOCALNODE:
// 本地包
cp->packet_xmit = ip_vs_null_xmit;
break;
case IP_VS_CONN_F_BYPASS:
// 旁路发送
cp->packet_xmit = ip_vs_bypass_xmit;
break;
}
}
将连接结构添加到连接HASH表:
/*
* Hashes ip_vs_conn in ip_vs_conn_tab by proto,addr,port.
* returns bool success.
*/
static inline int ip_vs_conn_hash(struct ip_vs_conn *cp)
{
unsigned hash;
int ret;
// 为什么不先判断flags呢?这样就不用计算HASH和加锁解锁了
/* Hash by protocol, client address and port */
hash = ip_vs_conn_hashkey(cp->protocol, cp->caddr, cp->cport);
ct_write_lock(hash);
if (!(cp->flags & IP_VS_CONN_F_HASHED)) {
list_add(&cp->c_list, &ip_vs_conn_tab[hash]);
// 设置HASH标志
cp->flags |= IP_VS_CONN_F_HASHED;
// 再次增加引用计数
atomic_inc(&cp->refcnt);
ret = 1;
} else {
IP_VS_ERR("ip_vs_conn_hash(): request for already hashed, "
"called from %p\n", __builtin_return_address(0));
ret = 0;
}
ct_write_unlock(hash);
return ret;
}
6.4 连接的释放
连接超时函数:
static void ip_vs_conn_expire(unsigned long data)
{
struct ip_vs_conn *cp = (struct ip_vs_conn *)data;
// 连接超时设为60秒
cp->timeout = 60*HZ;
/*
* hey, I'm using it
*/
// 再次增加引用值
atomic_inc(&cp->refcnt);
/*
* do I control anybody?
*/
// 如果有子连接,延迟
if (atomic_read(&cp->n_control))
goto expire_later;
/*
* unhash it if it is hashed in the conn table
*/
// 将连接结构从连接HASH表中断开
if (!ip_vs_conn_unhash(cp))
goto expire_later;
/*
* refcnt==1 implies I'm the only one referrer
*/
// 引用为1表示可以删除连接了
if (likely(atomic_read(&cp->refcnt) == 1)) {
/* delete the timer if it is activated by other users */
// 删除时钟,如果是定时器到时的话,定时器是已经删除了的
if (timer_pending(&cp->timer))
del_timer(&cp->timer);
/* does anybody control me? */
// 本身是某连接的子连接, 从主连接中删除
if (cp->control)
ip_vs_control_del(cp);
// 解除协议应用绑定,目前应用只有FTP
if (unlikely(cp->app != NULL))
ip_vs_unbind_app(cp);
// 解除与目的服务器的绑定
ip_vs_unbind_dest(cp);
// 如果客户端端口为0,减少0端口计数
if (cp->flags & IP_VS_CONN_F_NO_CPORT)
atomic_dec(&ip_vs_conn_no_cport_cnt);
// 减少IPVS连接总数
atomic_dec(&ip_vs_conn_count);
// 释放连接cache内存
kmem_cache_free(ip_vs_conn_cachep, cp);
return;
}
/* hash it back to the table */
// 还不能删除,重新把连接结构挂回连接HASH表
ip_vs_conn_hash(cp);
expire_later:
IP_VS_DBG(7, "delayed: conn->refcnt-1=%d conn->n_control=%d\n",
atomic_read(&cp->refcnt)-1,
atomic_read(&cp->n_control));
// 修改连接定时,减少连接引用计数
ip_vs_conn_put(cp);
}
从连接HASH表中断开:
/*
* UNhashes ip_vs_conn from ip_vs_conn_tab.
* returns bool success.
*/
static inline int ip_vs_conn_unhash(struct ip_vs_conn *cp)
{
unsigned hash;
int ret;
// 为什么不先判断flags呢?就不用计算HASH和加锁解锁了
/* unhash it and decrease its reference counter */
hash = ip_vs_conn_hashkey(cp->protocol, cp->caddr, cp->cport);
ct_write_lock(hash);
if (cp->flags & IP_VS_CONN_F_HASHED) {
// 从链表中删除
list_del(&cp->c_list);
cp->flags &= ~IP_VS_CONN_F_HASHED;
// 减少连接引用计数
atomic_dec(&cp->refcnt);
ret = 1;
} else
ret = 0;
ct_write_unlock(hash);
return ret;
}
从主连接中断开:
static inline void ip_vs_control_del(struct ip_vs_conn *cp)
{
// ctl_cp是主连接
struct ip_vs_conn *ctl_cp = cp->control;
if (!ctl_cp) {
IP_VS_ERR("request control DEL for uncontrolled: "
"%d.%d.%d.%d:%d to %d.%d.%d.%d:%d\n",
NIPQUAD(cp->caddr),ntohs(cp->cport),
NIPQUAD(cp->vaddr),ntohs(cp->vport));
return;
}
IP_VS_DBG(7, "DELeting control for: "
"cp.dst=%d.%d.%d.%d:%d ctl_cp.dst=%d.%d.%d.%d:%d\n",
NIPQUAD(cp->caddr),ntohs(cp->cport),
NIPQUAD(ctl_cp->caddr),ntohs(ctl_cp->cport));
// 将连接的主连接指针置空
cp->control = NULL;
if (atomic_read(&ctl_cp->n_control) == 0) {
IP_VS_ERR("BUG control DEL with n=0 : "
"%d.%d.%d.%d:%d to %d.%d.%d.%d:%d\n",
NIPQUAD(cp->caddr),ntohs(cp->cport),
NIPQUAD(cp->vaddr),ntohs(cp->vport));
return;
}
// 减少主连接的子连接计数
atomic_dec(&ctl_cp->n_control);
}
解除与应用的绑定:
/*
* Unbind cp from application incarnation (called by cp destructor)
*/
void ip_vs_unbind_app(struct ip_vs_conn *cp)
{
// 应用指针
struct ip_vs_app *inc = cp->app;
if (!inc)
return;
// 调用应用的解除绑定,不过对FTP协议该函数为NULL
if (inc->unbind_conn)
inc->unbind_conn(inc, cp);
// 调用应用的连接结束函数,对FTP协议就是ip_vs_ftp_done_conn
if (inc->done_conn)
inc->done_conn(inc, cp);
// 减少应用的应用计数
ip_vs_app_inc_put(inc);
// 将连接的应用指针置空
cp->app = NULL;
}
连接和目的服务器解除绑定:
/*
* Unbind a connection entry with its VS destination
* Called by the ip_vs_conn_expire function.
*/
static inline void ip_vs_unbind_dest(struct ip_vs_conn *cp)
{
struct ip_vs_dest *dest = cp->dest;
if (!dest)
return;
IP_VS_DBG(7, "Unbind-dest %s c:%u.%u.%u.%u:%d v:%u.%u.%u.%u:%d "
"d:%u.%u.%u.%u:%d fwd:%c s:%u conn->flags:%X conn->refcnt:%d "
"dest->refcnt:%d\n",
ip_vs_proto_name(cp->protocol),
NIPQUAD(cp->caddr), ntohs(cp->cport),
NIPQUAD(cp->vaddr), ntohs(cp->vport),
NIPQUAD(cp->daddr), ntohs(cp->dport),
ip_vs_fwd_tag(cp), cp->state,
cp->flags, atomic_read(&cp->refcnt),
atomic_read(&dest->refcnt));
/* Update the connection counters */
if (!(cp->flags & IP_VS_CONN_F_TEMPLATE)) {
// 普通连接
/* It is a normal connection, so decrease the inactconns
or activeconns counter */
if (cp->flags & IP_VS_CONN_F_INACTIVE) {
// 连接还是属于不活动连接,减少目的服务器的不活动连接计数
atomic_dec(&dest->inactconns);
} else {
// 连接还是属于活动连接,减少目的服务器的活动连接计数
atomic_dec(&dest->activeconns);
}
} else {
/* It is a persistent connection/template, so decrease
the peristent connection counter */
// 固定连接,减少固定连接计数
atomic_dec(&dest->persistconns);
}
// 当服务器连接低于某限制时去掉服务器超载标志
if (dest->l_threshold != 0) {
// 判断目的服务器的连接是否低于阈值下限
if (ip_vs_dest_totalconns(dest) < dest->l_threshold)
dest->flags &= ~IP_VS_DEST_F_OVERLOAD;
} else if (dest->u_threshold != 0) {
// 判断目的服务器的连接是否小于阈值上限的3/4
if (ip_vs_dest_totalconns(dest) * 4 < dest->u_threshold * 3)
dest->flags &= ~IP_VS_DEST_F_OVERLOAD;
} else {
// 没设置服务器阈值,如果服务器超载就改为非超载
if (dest->flags & IP_VS_DEST_F_OVERLOAD)
dest->flags &= ~IP_VS_DEST_F_OVERLOAD;
}
/*
* Simply decrease the refcnt of the dest, because the
* dest will be either in service's destination list
* or in the trash.
*/
// 减少目的服务器的引用计数
atomic_dec(&dest->refcnt);
}
6.5 其他释放连接函数
6.5.1 释放所有连接
在删除IPVS模块时调用,方法是让所有连接定时器到期而自动调用定时到期函数:
/*
* Flush all the connection entries in the ip_vs_conn_tab
*/
static void ip_vs_conn_flush(void)
{
int idx;
struct ip_vs_conn *cp;
flush_again:
// 循环所有连接HASH表
for (idx=0; idx /*
* Lock is actually needed in this loop.
*/
ct_write_lock_bh(idx);
// 循环链表
list_for_each_entry(cp, &ip_vs_conn_tab[idx], c_list) {
IP_VS_DBG(4, "del connection\n");
// 定时器立即到期
ip_vs_conn_expire_now(cp);
// 如果有主连接,立即使主连接定时器到期
if (cp->control) {
IP_VS_DBG(4, "del conn template\n");
ip_vs_conn_expire_now(cp->control);
}
}
ct_write_unlock_bh(idx);
}
/* the counter may be not NULL, because maybe some conn entries
are run by slow timer handler or unhashed but still referred */
if (atomic_read(&ip_vs_conn_count) != 0) {
// 如果连接数不为0,重新调度进程,重新释放
schedule();
goto flush_again;
}
}
连接定时器立即到期:
void ip_vs_conn_expire_now(struct ip_vs_conn *cp)
{
if (del_timer(&cp->timer))
mod_timer(&cp->timer, jiffies);
}
6.5.2 定时随机删除连接
该函数被IPVS的定时函数defense_work_handler()定期调用:
/* Called from keventd and must protect itself from softirqs */
void ip_vs_random_dropentry(void)
{
int idx;
struct ip_vs_conn *cp;
/*
* Randomly scan 1/32 of the whole table every second
*/
for (idx = 0; idx < (IP_VS_CONN_TAB_SIZE>>5); idx++) {
// 随机找个HASH链表
unsigned hash = net_random() & IP_VS_CONN_TAB_MASK;
/*
* Lock is actually needed in this loop.
*/
ct_write_lock_bh(hash);
list_for_each_entry(cp, &ip_vs_conn_tab[hash], c_list) {
// 模板连接不删
if (cp->flags & IP_VS_CONN_F_TEMPLATE)
/* connection template */
continue;
if (cp->protocol == IPPROTO_TCP) {
switch(cp->state) {
case IP_VS_TCP_S_SYN_RECV:
case IP_VS_TCP_S_SYNACK:
// TCP半连接
break;
case IP_VS_TCP_S_ESTABLISHED:
// 检查是否释放该连接
if (todrop_entry(cp))
break;
continue;
default:
// 其他TCP连接状态不删除连接
continue;
}
} else {
// 其他协议直接检查是否释放该连接
if (!todrop_entry(cp))
continue;
}
IP_VS_DBG(4, "del connection\n");
// 使连接到期
ip_vs_conn_expire_now(cp);
if (cp->control) {
IP_VS_DBG(4, "del conn template\n");
// 使主连接也到期
ip_vs_conn_expire_now(cp->control);
}
}
ct_write_unlock_bh(hash);
}
}
判断是否要删除连接
/*
* Randomly drop connection entries before running out of memory
*/
static inline int todrop_entry(struct ip_vs_conn *cp)
{
/*
* The drop rate array needs tuning for real environments.
* Called from timer bh only => no locking
*/
static const char todrop_rate[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
static char todrop_counter[9] = {0};
int i;
/* if the conn entry hasn't lasted for 60 seconds, don't drop it.
This will leave enough time for normal connection to get
through. */
// 60秒内连接就要被生产力,不用删了
if (time_before(cp->timeout + jiffies, cp->timer.expires + 60*HZ))
return 0;
/* Don't drop the entry if its number of incoming packets is not
located in [0, 8] */
i = atomic_read(&cp->in_pkts);
// 连接包数超过8不删, 小于0几乎不可能
if (i > 8 || i < 0) return 0;
// i==0时todrop_rate才是0,定义该值没啥意义
if (!todrop_rate[i]) return 0;
// 丢包计数还不为0不丢
if (--todrop_counter[i] > 0) return 0;
// 保存丢包计数器
todrop_counter[i] = todrop_rate[i];
return 1;
}
6.6 其他连接相关函数
/*
* Fill a no_client_port connection with a client port number
*/
// 该函数对未设置客户端端口的连接提供一个端口值,在ip_vs_nat_xmit()函数中调用
void ip_vs_conn_fill_cport(struct ip_vs_conn *cp, __u16 cport)
{
// 只处理还没有挂接到连接HASH表的连接
if (ip_vs_conn_unhash(cp)) {
// 这个锁最好还是加到下面的判断里面
spin_lock(&cp->lock);
// 只对设置NO_CPORT标志的连接操作
if (cp->flags & IP_VS_CONN_F_NO_CPORT) {
// 减少NO_CPORT的统计值
atomic_dec(&ip_vs_conn_no_cport_cnt);
// 去掉NO_CPORT标志
cp->flags &= ~IP_VS_CONN_F_NO_CPORT;
// 设置连接客户端端口
cp->cport = cport;
}
spin_unlock(&cp->lock);
/* hash on new dport */
ip_vs_conn_hash(cp);
}
}
/*
* Checking if the destination of a connection template is available.
* If available, return 1, otherwise invalidate this connection
* template and return 0.
*/
// 检查连接模板的目的服务器是否可用,ip_vs_sched_persist()函数中调用
int ip_vs_check_template(struct ip_vs_conn *ct)
{
// 连接的目的服务器
struct ip_vs_dest *dest = ct->dest;
/*
* Checking the dest server status.
*/
// 1.服务器不存在
if ((dest == NULL) ||
// 2.服务器不可用
!(dest->flags & IP_VS_DEST_F_AVAILABLE) ||
// 3.服务器权重为0而且参数sysctl_ip_vs_expire_quiescent_template非0
(sysctl_ip_vs_expire_quiescent_template &&
(atomic_read(&dest->weight) == 0))) {
IP_VS_DBG(9, "check_template: dest not available for "
"protocol %s s:%u.%u.%u.%u:%d v:%u.%u.%u.%u:%d "
"-> d:%u.%u.%u.%u:%d\n",
ip_vs_proto_name(ct->protocol),
NIPQUAD(ct->caddr), ntohs(ct->cport),
NIPQUAD(ct->vaddr), ntohs(ct->vport),
NIPQUAD(ct->daddr), ntohs(ct->dport));
/*
* Invalidate the connection template
*/
// 如果虚拟服务端口不等于65535,设置相关值使连接参数无效
if (ct->vport != 65535) {
if (ip_vs_conn_unhash(ct)) {
ct->dport = 65535;
ct->vport = 65535;
ct->cport = 0;
ip_vs_conn_hash(ct);
}
}
/*
* Simply decrease the refcnt of the template,
* don't restart its timer.
*/
// 减少连接引用计数,因为该连接对应的目标服务器已经不可用
atomic_dec(&ct->refcnt);
return 0;
}
return 1;
}
......待续......