Chinaunix首页 | 论坛 | 博客
  • 博客访问: 226213
  • 博文数量: 56
  • 博客积分: 2325
  • 博客等级: 大尉
  • 技术积分: 560
  • 用 户 组: 普通用户
  • 注册时间: 2009-03-30 18:18
文章存档

2012年(7)

2011年(1)

2010年(2)

2009年(46)

我的朋友

分类: C/C++

2009-05-21 10:09:31

我们先看正数的情况
根据IEEE的内存结构, 指数在高位,尾数在低位
浮点数大的对应的把其内存结构按照整数来理解进行比较的时候,情况也是成立的
因此在这里如果把他们进行比较的话,作为整数运算效率会非常的高,比如
float f1 = 1.23;
float f2 = 1.24
f1 > f2 成立
(int&)f1 > (int&)f2 也是成立的

而且,仔细研究IEEE的浮点结构,可以发现在《浮点数比较》当中提到的浮点数精度的问题——不是所有的浮点数都可以精确的表达
可以精确表达的浮点数实际上是有限的,就是那些IEEE的各种情况的枚举了 2^32个。不能表达的占据了大多数

IEEE在32位的情况下,尾数是23位的(暗含了第一个位数是1)
对于可以精确表达的浮点数来说,如果我们把这23位当作整数来理解, 它加1,就意味着可以找到比当前对应浮点数大的最小的浮点数了
反之,我们把两个浮点数,对应的整数做差值运算,得到的整数表明的是两个浮点数之间有多少个实际可以表达的浮点数(对应的指数相同的情况下很好理解;指数不同的时候,也是同样有效的)

这样,对于两个正的浮点数,他们的大小比较就可以用 (int&)f1 - (int&)f2 来进行比较了
差值的结果实际上就应该是相对误差了
这个相对误差,不等同于普遍意义上的相对误差
它所表达的是,两个浮点数之间可能还有多少个可以精确表达的浮点数
这样通过指定这个阈值来控制两个浮点数的比较就更有效了
对于两个正的浮点数
bool IsEqual(float f1, float f2, int absDelta)
{
     if ( abs ( (int&)f1 - (int&)f2 ) < absDelta ) return true;
}
这里用abs而不是fabs这在asm上面的运算差距也是很大的了

对于两个负数进行比较的情况也是相同的
只不过负数内存对应的整数加1,相应的找到的是更小的负数而已

但是负数和整数之间现在还不能进行直接的比较,因为根据IEEE的内存结构
正数和负数是不同的,对应的整数不能连续
正的最小的数就是0了,对应的整数也是0x00000000
负的最小的数就是-0,对应的整数则是0x 80000000
不用奇怪-0
在IEEE的表达当中是有两个0的,一个是 +0  一个是-0

有趣的是,按照 f1 == f2 的判断  +0和-0是相等的

通过对比我们可以发现,
+0 和正的浮点数可以按照转换成为整数的方式直接进行比较
-0 和负的浮点数可以按照转换成为整数的方式直接进行比较

如果我们能够把他们连接起来,整个整数方式的直接比较就完备了
对比一下负数的结构, 可以找到一个简单的办法了:
        把负数内存对应的整数减去 -0 ,他们就连续了
而且更好的结果是,所有的负数经过这次减法后,对应的整数也都是负数了
这样整个整数比较就变得连续了,而且在整个浮点数范围内都是有效的了

最后的比较算法就是:
//  函数:   bool IsEqual(float f1, float f2, int absDelta)
//  功能:把比较两个浮点数是否近似相同
//  输入:f1, f2参与比较的两个浮点数
//               absDelta 两个浮点数之间允许有多少个其他可以精确表达的浮点数存在,相当于相对误差
//  输出:   true,两个浮点数进行相等; false 两个浮点数不等
//  注意:仅仅适合IEEE 32位浮点数结构
bool IsEqual(float f1, float f2, int absDelta)
{
       int i1, i2;
       i1 = ( f1>0)  ? ((int&)f1)  : ( (int&) f1 - 0x80000000 );
       i2 = (f2>0)  ? ((int&)f2)  : ( (int&) f2 - 0x80000000 );
       return   ((abs(i1-i2))}
阅读(2994) | 评论(0) | 转发(0) |
0

上一篇:浮点数比较(一)

下一篇:动态分配内存

给主人留下些什么吧!~~