Chinaunix首页 | 论坛 | 博客
  • 博客访问: 616816
  • 博文数量: 201
  • 博客积分: 3076
  • 博客等级: 中校
  • 技术积分: 2333
  • 用 户 组: 普通用户
  • 注册时间: 2009-08-02 19:44
文章分类

全部博文(201)

文章存档

2010年(118)

2009年(83)

我的朋友

分类:

2009-12-24 14:13:53

Linux超线程感知的调度算法研究

随着计算机应用的日益普及,用户对计算机的处理能力的需求成指数级增长。为了满足用户的需求,处理器生产厂商采用了诸如超流水、分支预测、超标量、 乱序执行及缓存等技术以提高处理器的性能。但是这些技术的采用增加了微处理器的复杂性,带来了诸如材料、功耗、光刻、电磁兼容性等一系列问题。因此处理器 设计人员开始寻找新的途径来提高处理器的性能。Intel公司于2002年底推出了超线程技术,通过共享处理器的执行资源,提高CPU的利用率,让处理单 元获得更高的吞吐量。
1 超线程技术背景
  传统的处理器内部存在着多种并行操作方式。①指令级并行 ILP(Instruction Level Paramllelism):同时执行几条指令,单CPU就能完成。但是,传统的单CPU处理器只能同时执行一个线程,很难保证CPU资源得到100%的 利用,性能提高只能通过提升时钟频率和改进架构来实现。②线程级并行TLP(Thread Level Paramllesim):可以同时执行多个线程,但是需要多处理器系统的支持,通过增加CPU的数量来提高性能。
  超线程微处理器将同时多线 程技术SMT(Simultaneous Multi-Threading)引入Intel体系结构,支持超线程技术的操作系统将一个物理处理器视为两个逻辑处理器,并且为每个逻辑处理器分配一个 线程运行。物理处理器在两个逻辑处理器之间分配高速缓存、执行单元、总线等执行资源,让暂时闲置的运算单元去执行其他线程代码,从而最大限度地提升CPU 资源的利用率。
  Intel 超线程技术通过复制、划分、共享Intel的Netburst微架构的资源让一个物理CPU中具有两个逻辑CPU。(1)复制的资源:每个逻辑CPU都维 持一套完整的体系结构状态,包括通用寄存器、控制寄存器、高级可编程寄存器(APIC)以及一些机器状态寄存器,体系结构状态对程序或线程流进行跟踪。从 软件的角度,一旦体系结构状态被复制,就可以将一个物理CPU视为两个逻辑CPU。(2)划分的资源:包括重定序(re-order)缓冲、 Load/Store缓冲、队列等。划分的资源在多任务模式时分给两个逻辑CPU使用,在单任务模式时合并起来给一个逻辑CPU使用。(3)共享的资源: 包括cache及执行单元等,逻辑CPU共享物理CPU的执行单元进行加、减、取数等操作。
  在线程调度时,体系结构状态对程序或线程流进行跟 踪,各项工作(包括加、乘、加载等)由执行资源(处理器上的单元)负责完成。每个逻辑处理器可以单独对中断作出响应。第一个逻辑处理器跟踪一个线程时,第 二个逻辑处理器可以同时跟踪另一个线程。例如,当一个逻辑处理器在执行浮点运算时,另一个逻辑处理器可以执行加法运算和加载操作。拥有超线程技术的CPU 可以同时执行处理两个线程,它可以将来自两个线程的指令同时发送到处理器内核执行。处理器内核采用乱序指令调度并发执行两个线程,以确保其执行单元在各时 钟周期均处于运行状态。
  图1和图2分别为传统的双处理器系统和支持超线程的双处理器系统。传统的双处理器系统中,每个处理器有一套独立的体系 结构状态和处理器执行资源,每个处理器上只能同时执行一个线程。支持超线程的双处理器系统中,每个处理器有两套独立体系结构状态,可以独立地响应中断。


2 Linux超线程感知调度优化
  Linux从2.4.17版开始支持超线程技术,传统的Linux O(1)调度器不能区分物理CPU和逻辑CPU,因此不能充分利用超线程处理器的特性。Ingo Monlar编写了“HT-aware scheduler patch”,针对超线程技术对O(1)调度器进行了调度算法优化:优先安排线程在空闲的物理CPU的逻辑CPU上运行,避免资源竞争带来的性能下降;在 线程调度时考虑了在两个逻辑CPU之间进行线程迁移的开销远远小于物理CPU之间的迁移开销以及逻辑CPU共享cache等资源的特性。这些优化的相关算 法被Linux的后期版本所吸收,具体如下:
  (1)共享运行队列
  在对称多处理SMP(Symmetrical Multi-Processing)环境中,O(1)调度器为每个CPU分配了一个运行队列,避免了多CPU共用一个运行队列带来的资源竞争。Linux 会将超线程CPU中的两个逻辑CPU视为SMP的两个独立CPU,各维持一个运行队列。但是这两个逻辑CPU共享cache等资源,没有体现超线程CPU 的特性。因此引入了共享运行队列的概念。HT-aware scheduler patch在运行队列struct runqueue结构中增加了nr_cpu和cpu两个属性,nr_cpu记录物理CPU中的逻辑CPU数目,CPU则指向同属CPU(同一个物理CPU 上的另一个逻辑CPU)的运行队列,如图3所示。


  在Linux中通过调用sched_map_runqueue( )函数实现两个逻辑CPU的运行队列的合并。sched_map_runqueue( )首先会查询系统的CPU队列,通过phys_proc_id(记录逻辑CPU所属的物理CPU的ID)判断当前CPU的同属逻辑CPU。如果找到同属逻 辑CPU,则将当前CPU运行队列的cpu属性指向同属逻辑CPU的运行队列。
  (2)支持“被动的”负载均衡
  用中断驱动的均衡操 作必须针对各个物理 CPU,而不是各个逻辑 CPU。否则可能会出现两种情况:一个物理 CPU 运行两个任务,而另一个物理 CPU 不运行任务;现有的调度程序不会将这种情形认为是“失衡的”。在调度程序看来,似乎是第一个物理处理器上的两个 CPU运行1-1任务,而第二个物理处理器上的两个 CPU运行0-0任务。
  在2.6.0版之前,Linux只有通过 load_balance( )函数才能进行CPU之间负载均衡。当某个CPU负载过轻而另一个CPU负载较重时,系统会调用load_balance( )函数从重载CPU上迁移线程到负载较轻的CPU上。只有系统最繁忙的CPU的负载超过当前CPU负载的 25% 时才进行负载平衡。找到最繁忙的CPU(源CPU)之后,确定需要迁移的线程数为源CPU负载与本CPU负载之差的一半,然后按照从 expired 队列到 active 队列、从低优先级线程到高优先级线程的顺序进行迁移。
  在超线程系统中进行负载均衡时,如果也是将逻辑CPU等同于SMP环境中的单个CPU进行调度,则可能会将线程迁移到同一个物理CPU的两个逻辑CPU上,从而导致物理CPU的负载过重。
  在2.6.0版之后,Linux开始支持NUMA(Non-Uniform Memory Access Architecture)体系结构。进行负载均衡时除了要考虑单个CPU的负载,还要考虑NUMA下各个节点的负载情况。
  Linux的超线程调度借鉴NUMA的算法,将物理CPU当作NUMA中的一个节点,并且将物理CPU中的逻辑CPU映射到该节点,通过运行队列中的node_nr_running属性记录当前物理CPU的负载情况。
   Linux通过balance_node( )函数进行物理CPU之间的负载均衡。物理CPU间的负载平衡作为rebalance_tick( )函数中的一部分在 load_balance( )之前启动,避免了出现一个物理CPU运行1-1任务,而第二个物理CPU运行0-0任务的情况。balance_node( )函数首先调用 find_
  busiest_node( )找到系统中最繁忙的节点,然后在该节点和当前CPU组成的CPU集合中进行 load_balance( ),把最繁忙的物理CPU中的线程迁移到当前CPU上。之后rebalance_tick( )函数再调用load_balance(工作集为当前的物理CPU中的所有逻辑CPU)进行逻辑CPU之间的负载均衡。
  (3)支持“主动的”负载均衡
  当一个逻辑 CPU 变成空闲时,可能造成一个物理CPU的负载失衡。例如:系统中有两个物理CPU,一个物理CPU上运行一个任务并且刚刚结束,另一个物理CPU上正在运行两个任务,此时出现了一个物理CPU空闲而另一个物理CPU忙的现象。

Linux中通过active_load_balance( )函数进行主动的负载均衡,active_load_balance( )函数用于在所有的逻辑CPU中查询该CPU的忙闲情况。如果发现由于超线程引起的负载不平衡(一个物理CPU的两个逻辑CPU都空闲,另一个物理CPU 的两个逻辑CPU都在运行两个线程),则唤醒一个需要迁移的线程,将它从一个忙的物理CPU迁移到一个空闲的物理CPU上。
   active_load_balance( )通过调用cpu_rq( )函数得到每一个逻辑CPU上的运行队列。如果运行队列上的当前运行线程为idle线程,则说明当前逻辑CPU为空闲;如果发现一个物理CPU两个逻辑 CPU都为空闲,而另一个物理CPU中的两个逻辑CPU的运行队列为繁忙的情况,则说明存在超线程引起的负载不均衡。这时当前CPU会唤醒迁移服务线程 (migration_thread)来完成负载均衡的线程迁移。
  (4)支持超线程感知的任务挑选
  在超线程处理器中,由于cache资源为两个逻辑处理器共享,因此调度器在选取一个新任务时,必须确保同组的任务尽量共享一个物理CPU,从而减少cache失效的开销,提高系统的性能。而传统的调度器只是简单地为逻辑CPU选取一个任务,没有考虑物理CPU的影响。
   Linux进行线程切换时会调用schedule( )函数进行具体的操作。如果没有找到合适的任务schedule()函数,则会调度idle线程在当前CPU上运行。在超线程环境中Linux调度 idle线程运行之前会查询其同属CPU的忙闲状况。如果同属CPU上有等待运行的线程,则会调用一次load_balance( )函数在两个同属CPU之间作一次负载均衡,将等待运行的线程迁移到当前CPU上,保证优先运行同属CPU上的任务。
  (5)支持超线程感知的CPU唤醒
  传统的调度器只知道当前CPU,而不知道同属的逻辑CPU。在超线程环境下,一个逻辑CPU正在执行任务时,其上的一个线程被唤醒了,此时,如果它的同属逻辑CPU是空闲的,则应该在同属逻辑CPU上运行刚刚唤醒的任务。
   Linux通过wake_up_cpu( )函数实现CPU唤醒,在try_o_wakeup、pull_task、move_task_away加入了wake_up_cpu( )函数的相应调用点。wake_up_cpu()首先查询当前CPU是不是空闲的,如果当前CPU为空闲,则调用resched_cpu( )函数启动调度器,将唤醒的线程调度到当前CPU执行;否则查找其同属逻辑CPU。如果同属逻辑CPU是空闲的,则将唤醒的线程调度到同属逻辑CPU上执 行;否则比较唤醒的线程和当前CPU上运行的线程的优先级。如果唤醒的线程的优先级高,或者优先级相等但是时间片多,则进行线程切换,在当前CPU上调度 执行唤醒的线程。如果上述条件都不满足,最后比较唤醒的线程和当前CPU的同属逻辑CPU上运行的线程的优先级,如果唤醒的线程的优先级高,或者优先级相 等但是时间片多,则在同属逻辑CPU上调度执行唤醒的线程。
3 性能测试
  Linux-2.6.0 HT-aware scheduler patch实现了上述超线程调度优化。这里根据linux-2.6.0 HT-aware scheduler patch对这几种调度优化进行了性能测试。
  测试硬件环境:Xeon 2.2GHz处理器(支持超线程)×4,2GB SDRAM内存。
   Benchmark:(1)Volanomark是一个纯Java的benchmark,专门用于测试系统调度器和线程环境的综合性能。它建立一个模拟 Client/Server方式的Java聊天室,通过获取每秒平均发送的消息数来评测宿主机综合性能(数值越大性能越好)。Volanomark测试与 Java虚拟机平台相关,本文使用Sun Java SDK 1.4.2作为测试用Java平台,Volanomark版本2.5.0.9。(2)LMBench是一个用于评价系统综合性能的多平台开源 benchmark,对其进行修改后实现了lat_thread_ctx接口,用来测试线程的切换开销。
  图4表明开启超线程后Volanomark在Linux-2.6.0平台下平均吞吐量提高了25.5%。由于Linux的O(1)内核调度器比较好地实现了SMP负载均衡算法,所以在超线程环境下整个系统的性能也有了比较好的提升。
   图5显示出Linux在进行了超线程调度优化后,在支持超线程的平台上所获得的性能加速比。在Linux-2.6.0加入HT-aware scheduler patch后Volanomark的平均吞吐提高了 8.5%,分别实现主动负载均衡、被动的负载均衡、CPU唤醒和任务挑选的相关代码后,吞吐量分别提高了1.8.%、2.5%、2.3%和2.1%。


 


  使用Lmbench创建10~150个线程,在不同的负载条件下测试线程的切换开销。表1的数据显示HT-aware scheduler patch可以将线程的切换开销减少3%~7%。数据显示:在轻负载情况下,系统可以获得更多的加速比。这是因为被动的负载均衡以及主动的负载均衡只有在 系统有CPU空闲时才能发挥比较好的作用。


4 相关工作和展望
  采用支持超线程技术的Linux可以获得较大的性能提升。但是其调度算法还要根据实际的应用 进一步研究。参考文献[7]中提出了用“Symbiosis”概念来衡量多个线程在SMT环境中同时执行的有效性。参考文献[8]中提出了线程敏感的调度 算法,用一组硬件性能计数器计算两个逻辑CPU上运行不同作业子集的执行信息,利用这些信息来预测不同作业子集的执行性能,并选择具有最好预测性能的作业 子集调度同一个物理CPU执行。参考文献[9]中主要研究了适合SMT 结构并考虑作业优先级的调度器。研究结果表明,这些调度算法能有效地提高超线程系统的性能。
  Intel的超线程技术是其企业产品线中的重要特 征,并将会集成到越来越多的产品中,它标志着Intel微处理器一个新的时代:从指令级并行到线程级并行,这样可使微处理器运行模式与多线程应用的运行模 式更加接近,应用程序可以充分利用线程级并行和指令级并行进行优化。随着超线程处理器的发展,可能会出现操作系统使用处理器系统中硬件性能监视器估算系统 在某一时间段的某些性能指标,然后利用这些性能指标来指导线程的调度策略。

阅读(768) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~