Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1651967
  • 博文数量: 245
  • 博客积分: 10378
  • 博客等级: 上将
  • 技术积分: 2571
  • 用 户 组: 普通用户
  • 注册时间: 2009-03-27 08:19
文章分类

全部博文(245)

文章存档

2013年(4)

2012年(8)

2011年(13)

2010年(68)

2009年(152)

分类: LINUX

2010-03-23 15:29:48

线性常系数差分方程的求解?
           已知系统的输入序列,通过求解差分方程可以求出输出序列。求解差分方程的基本方法有以下三种:
?   (1) 经典解法。
                  y(n) = yH(n) + yP(n)
           ----Homogeneous part:   yH(n)
             ----Particular part:         yP(n)
       (2) 递推解法。迭代法,卷积和计算法
       (3) 变换域方法。Z变换法  

递推解法:
             已知输入序列和N个初始条件,则可以求出n时刻的输出;如果将该公式中的n用n+1代替,可以求出n+1时刻的输出,因此(1.3.1)式表示的差分方程本身就是一个适合递推法求解的方程。
            例1.3.1 设系统用差分方程y(n)=ay(n-1)+x(n)描述,输入序列x(n)=δ(n),求输出序列y(n)。?
            解 该系统差分方程是一阶差分方程,需要一个初始条件。?
 
   y = filter (b, a, x)
   where  
           b=[b0,b1,……bM]       a=[a0,a1,……aN]
                         are the coefficient arrays from the equation.
           x is the input sequence array.
           The output y has the same length as input x.
  Note: ensure that the coeffient a0 not be zero.

e.g,    y(n)-y(n-1)+0.9y(n-2)=x(n);
 
Solution 
From the given difference equation the coefficient array are:
        b=[1];
        a=[1,-1,0.9];
 
%matlab code
a=[1,-1,0.9];
b=1;
% Part a.
x=impseq(0,-20,120); 
n=[-20:120];
h=filter(b,a,x);
subplot(2,1,1); 
stem(n,h)
axis([-20,120,-1.1,1.1])
title('脉冲响应');    
text(125,-1.1,'n');     
ylabel('h(n)')
 
从上边可以看出,使用filter来解差分方程式是非常方便的,
可以在matlab的帮助文件中看出一些信息:
 
    FILTER One-dimensional digital filter.
    Y = FILTER(B,A,X) filters the data in vector X with the
    filter described by vectors A and B to create the filtered
    data Y.  The filter is a "Direct Form II Transposed"
    implementation of the standard difference equation:
 
    a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
                          - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
 
    If a(1) is not equal to 1, FILTER normalizes the filter
    coefficients by a(1).
 
    FILTER always operates along the first non-singleton dimension,
    namely dimension 1 for column vectors and non-trivial matrices,
    and dimension 2 for row vectors.
 
    [Y,Zf] = FILTER(B,A,X,Zi) gives access to initial and final
    conditions, Zi and Zf, of the delays.  Zi is a vector of length
    MAX(LENGTH(A),LENGTH(B))-1, or an array with the leading dimension
    of size MAX(LENGTH(A),LENGTH(B))-1 and with remaining dimensions
    matching those of X.
 
    FILTER(B,A,X,[],DIM) or FILTER(B,A,X,Zi,DIM) operates along the
    dimension DIM.
 
   
MATLAB Function Reference   filter Filter data with an infinite impulse response (IIR) or finite impulse response (FIR) filter Syntaxy = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
 
DescriptionThe filter function filters a data sequence using a digital filter which works for both real and complex inputs. The filter is a direct form II transposed implementation of the standard difference equation (see "Algorithm"). y = filter(b,a,X) filters the data in vector X with the filter described by numerator coefficient vector b and denominator coefficient vector a. If a(1) is not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals 0, filter returns an error. If X is a matrix, filter operates on the columns of X. If X is a multidimensional array, filter operates on the first nonsingleton dimension. [y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays. If X is a row or column vector, output zf is a column vector of max(length(a),length(b))-1. If X is a matrix, zf is an array of such vectors, one for each column of X, and similarly for multidimensional arrays. [y,zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns the final conditions, zf, of the filter delays. Input zi is a vector of length max(length(a),length(b))-1, or an array with the leading dimension of size max(length(a),length(b))-1 and with remaining dimensions matching those of X. y = filter(b,a,X,zi,dim) and [...] = filter(b,a,X,[],dim) operate across the dimension dim
 
ExampleYou can use filter to find a running average without using a for loop. This example finds the running average of a 16-element vector, using a window size of 5. data = [1:0.2:4]';
windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)
ans =
    0.2000
    0.4400
    0.7200
    1.0400
    1.4000
    1.6000
    1.8000
    2.0000
    2.2000
    2.4000
    2.6000
    2.8000
    3.0000
    3.2000
    3.4000
    3.6000
[...] = filter(b,a,X,[],dim)
 
 
阅读(1764) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~