最大连续子序列
来源:
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ...,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
Hint
Hint
Huge input, scanf is recommended.
Source
浙大计算机研究生复试上机考试-2005年
代码1:
网上来源:
代码2:
#include
#include
#include
#include
int maxSubSequence(int *sequence, int len)
{
assert(NULL != sequence);
// sucessive subsequence begin and end element index
int firstpos, lastpos;
int beginIndex, endIndex;
beginIndex = endIndex = -1;
// 首尾第一个非负整数
for (beginIndex = 0; beginIndex < len; ++beginIndex)
{
if (sequence[beginIndex] >= 0)
{
break;
}
}
for (endIndex = len-1; endIndex >= 0; --endIndex)
{
if (sequence[endIndex] >= 0)
{
break;
}
}
// all element negative or only one non-negative element
if (beginIndex >= endIndex)
{
if (beginIndex == -1 || endIndex == -1)
{
printf("max successive subsequence sum, begin and end index: %d %d %d\n",
0, 0, len-1);
return 0;
}
else if (endIndex >= 0)
{
printf("max successive subsequence sum, begin and end index: %d %d %d\n",
sequence[beginIndex], beginIndex, beginIndex);
return sequence[beginIndex];
}
}
int tempfirst = -1;
int templast = -1;
int maxsum = -1;
int tempsum = -1;
// 从beginIndex向endIndex扫描一遍,保存的是max-subsequence第一次出现的位置
for (int i = beginIndex; i <= endIndex; ++i)
{
if (tempsum >= 0)
{
++templast;
tempsum += sequence[i];
}
else
{
tempfirst = i;
templast = i;
tempsum = sequence[i];
}
if (tempsum > maxsum)
{
firstpos = tempfirst;
lastpos = templast;
maxsum = tempsum;
}
}
printf("max successive subsequence sum, begin and end index: %d %d %d\n",
maxsum, firstpos, lastpos);
return maxsum;
}
int main(int argc, char **argv)
{
// test cases
int array1[] = {-2, 11, -4, 13, -5, -2};
maxSubSequence(array1, sizeof(array1)/sizeof(int));
int array2[] = {-10, 1, 2, 3, 4, -5, -23, 3, 7, -21};
maxSubSequence(array2, sizeof(array2)/sizeof(int));
int array3[] = {5, -8, 3, 2, 5, 0};
maxSubSequence(array3, sizeof(array3)/sizeof(int));
int array4[] = {10};
maxSubSequence(array4, sizeof(array4)/sizeof(int));
int array5[] = {-1, -5, -2};
maxSubSequence(array5, sizeof(array5)/sizeof(int));
int array6[] = {0, 0, -2};
maxSubSequence(array6, sizeof(array6)/sizeof(int));
return 0;
}
输出结果:
max successive subsequence sum, begin and end index: 20 1 3
max successive subsequence sum, begin and end index: 10 1 4
max successive subsequence sum, begin and end index: 10 2 4
max successive subsequence sum, begin and end index: 10 0 0
max successive subsequence sum, begin and end index: 0 0 2
max successive subsequence sum, begin and end index: 0 0 0
阅读(1825) | 评论(0) | 转发(0) |