Chinaunix首页 | 论坛 | 博客
  • 博客访问: 363015
  • 博文数量: 86
  • 博客积分: 1460
  • 博客等级: 上尉
  • 技术积分: 848
  • 用 户 组: 普通用户
  • 注册时间: 2009-07-12 14:07
文章分类

全部博文(86)

文章存档

2017年(36)

2016年(17)

2015年(1)

2013年(12)

2012年(2)

2011年(1)

2010年(1)

2009年(16)

我的朋友

分类: LINUX

2009-08-13 19:54:40

System.map、vmlinuz、initrd-2.4.7-10.img的产生和作用
from: http://blog.chinaunix.net/u2/64845/showart_510751.html

   一、vmlinuz

     1.vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux
支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接,比如图中是vmlinuz-2.4.7-10的软链接。
     vmlinuz的建立有两种方式。一是编译内核时通过“make zImage”创建,然后通过:“cp
/usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz”产生。zImage适用于
小内核的情况,它的存在是为了向后的兼容性。

    2.是内核编译时通过命令make
   bzImage创建,然后通过:“cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage
/boot/vmlinuz”产生。bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”。 bzImage中的b是“big”意思。

     zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip 或 gzip –dc解包vmlinuz。内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),
bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage或bzImage之一,两种方式引导的系统运行时是相同的。

     大的内核采用bzImage,不能采用zImage。vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
二、initrd-x.x.x.img
      initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。图中的initrd-2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但
scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.6.20-1.img是用gzip压缩的文件,initrd实现加载一些模块和安装文件系统等功能。

      initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它

    Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd下面的命令创建initrd映象文件。

  initrd是linux在系统引导过程中使用的一个临时的根文件系统,用来支持两阶段的引导过程。

  直白一点,initrd就是一个带有根文件系统的虚拟RAM盘,里面包含了根目录‘/’,以及其他的目录,比如:bin,dev,proc,sbin,sys等linux启动时必须的目录,以及在bin目录下加入了一下必须的可执行命令。

     PC或者服务器linux内核使用这个initrd来挂载真正的根文件系统,然后将此initrd从内存中 卸掉,这种情况下initrd其实就是一个过渡使用的东西。 在现在的许多简单嵌入式linux中一般是不卸载这个initrd的,而是直接将其作为根文件系统使用,在这之前就需要把所需要的程序,命令还有其它文件 都安装到这个文件系统中。其实现在的大多数嵌入式系统也是有自己的磁盘的,所以,initrd在现在大多数的嵌入式系统中也和一般的linux中的作用一 样只是起过渡使用。

  Initrd的引导过程:‘第二阶段引导程序’,常用的是grub将内核解压缩并拷贝到内存中,然后内 核接管了CPU开始执行,然后内核调用init()函数,注意,此init函数并不是后来的init进程!!!然后内核调用函数 initrd_load()来在内存中加载initrd根文件系统。Initrd_load()函数又调用了一些其他的函数来为RAM磁盘分配空间,并计 算CRC等操作。然后对RAM磁盘进行解压,并将其加载到内存中。现在,内存中就有了initrd的映象。

  然后内核会调用mount_root()函数来创建真正的根分区文件系统,然后调用sys_mount()函数来加载真正的根文件系统,然后chdir到这个真正的根文件系统中。

  最后,init函数调用run_init_process函数,利用execve来启动init进程,从而进入init的运行过程。



三、System.map

      内核符号映射表,顾名思义就是将内核中的符号(也就是内核中的函数)和它的地址能联系起来的一个列表。是所有符号及其对应地址的一个列表。之所以这样就使为了用户编程方便,直接使用函数符号就可以了,而不用去记要使用函数的地址。  当你编译一个新内核时,原来的System.map中的符号信息就不正确了。随着每次内核的编译,就会产生一个新的 System.map文件,并且需要用该文件取代原来的文件

      System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。
内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。


下面是System.map文件的一部分:
c0100000 A _text
c0100000 t startup_32
c01000a5 t checkCPUtype
c0100133 t is486
c0100142 t is386
c010018c t L6
c010018e t ready
c010018f t check_x87
c01001b6 t setup_idt
c01001d3 t rp_sidt
c01001e0 T stack_start
c01001e8 t int_msg
c01001fc t ignore_int
c010021e T idt_descr
c0100224 T cpu_gdt_descr
c0101000 T swapper_pg_dir
c0102000 T pg0
c0103000 T pg1
c0104000 T empty_zero_page
c0105000 T _stext
     在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。
     Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。
     对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。
然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。上图就是一个内核符号表,由上图可知变量名checkCPUtype在内核地址c01000a5。
Linux 符号表使用到2个文件:
/proc/ksyms
System.map

         /proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看出来。然而,System.map是存在于你的文件系统上的实际文件。
        当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd,lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。
        另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。
         Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:manklogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map:
/boot/System.map
/System.map
/usr/src/linux/System.map

System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。
阅读(3016) | 评论(0) | 转发(3) |
给主人留下些什么吧!~~