快速排序:
快速排序操作如下,将数组a[r..p]分成两个子数组,a[p..q], a[q+1,r],并且保证a[p..q]中的每一个值小于a[q+1,r]。然后再对每个子数组做相同的操作。
伪码:
Normal
0
7.8 磅
0
2
false
false
false
EN-US
ZH-CN
X-NONE
MicrosoftInternetExplorer4
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:普通表格;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-font-kerning:1.0pt;}
QuickSort
1.
If
p < r then
a)
q Partition (A,
p, r)
b)
Recursive
call to Quick Sort (A, p, q)
c)
Recursive
call to Quick Sort (A, q + r, r)
PARTITION (A,
p, r)
1.
x ←
A[p]
2.
i ←
p-1
3.
j ←
r+1
4.
while
TRUE do
a)
Repeat
j ← j-1
b)
until
A[j] ≤ x
c)
Repeat
i ← i+1
d)
until
A[i] ≥ x
e)
if
i < j
f)
then
exchange A[i] ↔ A[j]
g)
else
return j
- void quickSort(int numbers[], int array_size)
-
{
-
q_sort(numbers, 0, array_size - 1);
-
}
-
-
-
void q_sort(int numbers[], int left, int right)
-
{
-
int pivot, l_hold, r_hold;
-
-
l_hold = left;
-
r_hold = right;
-
pivot = numbers[left];
-
while (left < right)
-
{
-
while ((numbers[right] >= pivot) && (left < right))
-
right--;
-
if (left != right)
-
{
-
numbers[left] = numbers[right];
-
left++;
-
}
-
while ((numbers[left] <= pivot) && (left < right))
-
left++;
-
if (left != right)
-
{
-
numbers[right] = numbers[left];
-
right--;
-
}
-
}
-
numbers[left] = pivot;
-
pivot = left;
-
left = l_hold;
-
right = r_hold;
-
if (left < pivot)
-
q_sort(numbers, left, pivot-1);
-
if (right > pivot)
-
q_sort(numbers, pivot+1, right);
-
}
阅读(1059) | 评论(0) | 转发(0) |