分类:
2011-01-03 09:01:44
无论哪种运放都有两个输入端,即同相输入端V+,反相输入端V-,一个输出端Uo。它的基本特性:当从同相端输入信号时,其输出与输入端信号同相位,即同相放大;当从反相端输入信号时,其输出与输入端信号相位相反,即反相放大。当从同相输入端和反相输入端同时注入不同信号时,输出端输出的信号是它们的代数和,即差动放大。当同相输入端和反相输入端同时输入同一信号时,输出端无信号,这是因为正、反相放大器放大后的信号由于相位相反,刚好抵消。
运放是一种通用电子器件,它的应用很广,比如在放大、振荡、电压比较,模拟运算、阻抗变换,有源滤波等电路中。但不管在哪种电路中应用,均是基于运放的三种基本放大电路:即同相放大器、反相放大器、差动放大器。
1.反相放大器
上图是反相放大器电路,图中,输入电压Vi通过R1加到反相输入端A,同相输入端B接地。输出电压Vo又通过反馈Rf反馈到反相输入端A。通过计算得到:输出电压为:Vo=-Vi(计算过程略) 。可见,反相放大器的输出电压Vo与输入电压Vi存在着比例关系且相位相反,故称反相输入比例运算放大器,简称反相放大器。
2.同相放大器
上图是同相放大器电路,信号电压Vi从同相输入端B输入,而输出电压Vo通过电阻Rf反馈到反相输入端A处。通过计算得到:Vo=(计算过程略)。可见,同相放大器的放大倍数取决于电阻Rf与R1的比值。输出电压Vo与输入电压同相且有比例关系,比例常数是 。故称同相输入比例运算电路,简称同相放大器。
3.减法器电路
上图是运放构成的减法器电路,输入信号Vi1通过电阻R1加到反相输入端;输入信号Vi2通过电阻R2加到同相输入端,反馈电压则由输出端通过反馈电阻Rf反馈到反相输入端。在同相输入端与“地”之间接有电阻R3.为了使集成运放两输入端的输入电阻对称,通常使R1=R2,R3=Rf。通过运算可得:Vo=(Vi1-Vi2)
可见,输出电压正比于两个输入电压之差。如果取Rf=R1,则 Vo=Vi1-Vi2 。这时,电路就成为减法器。
图5是运放构成的加法器电路,它实际是运放构成的反相放大器。U1、U2是两个相加电压,Uo则是电压和, 当R1=R2=R3时,放大倍数A=1,R4为平衡电阻,用以提供适当偏流以防止放大器失调。
图7是运放构成的比较器电路,它也是整动放大器的应用,当输入电压U1大于基准电压E时,它的输出端将有电压输出,所以它常用于伺服或保护电路中。
图8是运放构成的阻抗变换器电路,它是运放构成的同相放大器,放大倍数A=1的特例。它输出电压与输入电压相等、相位相同,但它却有极高的输入阻抗和较低输出阻抗,故也将它称为电压跟随器。
图9是运放构成的电压放大器,其放大倍数由R2、R3共同决定,其中Cl是信号耦合电容,C2是高频旁路电容,R1、R2为偏置电阻,R3为负反馈电阻。
图10是运放构成的正弦波振荡器,R1、R2、C1、C2构成正反馈电路,R3、R4、R5构成负反馈电路,D1、D2起稳定振幅的作用。
图11是运放构成的二分频电路,它实际是有源滤波器。在图11中,ICl等构成二阶高通滤波器,IC2等构成二阶低通滤波器,它能将前置放大器送来的音频信号分频后,分别送入两个功率放大器放大,然后分别推动高音和低音喇叭放音。
以上只是粗略介绍了运放的一些典型应用,实际上的应用还很多,在此不再一一举例。
运放的主要参数有:工作电压、静态工作电流,信噪比、电压最大增益、功耗、输入失调电压、输入失调、输入阻抗、输出阻抗、增益带宽积及转换速率等.下面仅解释一下什么是增益带宽积与转换速率。所谓增益带宽积是指运放开环电压放大倍数A=1时,带宽与放大倍数的乘积。对应的带宽频率用fc表示(因工作频率升高,运放的放大倍数降低),一般通用型可达1MHz,宽带高速运放可达100MHz以上。所谓转换速率是指在额定负载条件下,当输入边沿陡峭为大信号时,运放输出电压的变化与所用时间比值,即输出电压变化率,用SR表示。SR=U02-U01/t2-t1=△UO/△t,单位V/μs(伏/微秒),见图4,它是反映运放对输入信号的反映速度。