Chinaunix首页 | 论坛 | 博客
  • 博客访问: 346520
  • 博文数量: 102
  • 博客积分: 3140
  • 博客等级: 中校
  • 技术积分: 680
  • 用 户 组: 普通用户
  • 注册时间: 2008-12-28 11:44
个人简介

开阔未来

文章分类

全部博文(102)

文章存档

2015年(10)

2014年(1)

2013年(1)

2012年(4)

2011年(8)

2010年(24)

2009年(51)

2008年(3)

我的朋友

分类: LINUX

2009-04-05 08:42:12

initrd 的英文含义是 boot loader initialized RAM disk,就是由 boot loader 初始化的内存盘。在 linux内核启动前, boot loader 会把存储介质中的 initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的 initrd 文件系统。在 boot loader 配置了 initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行 initrd 文件系统中的"某个文件",完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的 /sbin/init 进程。这里提到的"某个文件",Linux2.6 内核会同以前版本内核的不同,所以这里暂时使用了"某个文件"这个称呼,后面会详细讲到。第一阶段启动的目的是为第二阶段的启动扫清一切障爱,最主要的是加载根文件系统存储介质的驱动模块。我们知道根文件系统可以存储在包括IDE、SCSI、USB在内的多种介质上,如果把这些设备的驱动都编译进内核,可以想象内核会多么庞大、臃肿。

Initrd 的用途主要有以下四种:

1. linux 发行版的必备部件

linux 发行版必须适应各种不同的硬件架构,把所有的驱动编译进内核是不现实的,initrd 技术是解决该问题的关键技术。Linux 发行版在内核中只编译了基本的硬件驱动,在安装过程中通过检测系统硬件,生成包含安装系统硬件驱动的 initrd,无非是一种即可行又灵活的解决方案。

2. livecd 的必备部件

同 linux 发行版相比,livecd 可能会面对更加复杂的硬件环境,所以也必须使用 initrd。

3. 制作 Linux usb 启动盘必须使用 initrd

usb 设备是启动比较慢的设备,从驱动加载到设备真正可用大概需要几秒钟时间。如果把 usb 驱动编译进内核,内核通常不能成功访问 usb 设备中的文件系统。因为在内核访问 usb 设备时, usb 设备通常没有初始化完毕。所以常规的做法是,在 initrd 中加载 usb 驱动,然后休眠几秒中,等待 usb设备初始化完毕后再挂载 usb 设备中的文件系统。

4. 在 linuxrc 脚本中可以很方便地启用个性化 bootsplash。


为了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的initrd进行一个简单的介绍。Linux2.4内核的initrd的格式是文件系统镜像文件,本文把其称为image-initrd,以区别后面介绍的linux2.6内核的cpio格式的initrd。 linux2.4内核对initrd的处理流程如下:

1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。

2. 在内核初始化过程中,内核把 /dev/initrd 设备的内容解压缩并拷贝到 /dev/ram0 设备上。

3. 内核以可读写的方式把 /dev/ram0 设备挂载为原始的根文件系统。

4. 如果 /dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

5. 执行 initrd 上的 /linuxrc 文件,linuxrc 通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。

6. /linuxrc 执行完毕,真正的根文件系统被挂载。

7. 如果真正的根文件系统存在 /initrd 目录,那么 /dev/ram0 把从 / 移动到 /initrd。否则如果 /initrd 目录不存在, /dev/ram0 把被卸载。

8. 在真正的根文件系统上进行正常启动过程 ,执行 /sbin/init。 linux2.4 内核的 initrd 的执行是作为内核启动的一个中间阶段,也就是说 initrd 的 /linuxrc 执行以后,内核会继续执行初始化代码,我们后面会看到这是 linux2.4 内核同 2.6 内核的 initrd 处理流程的一个显著区别。

linux2.6 内核支持两种格式的 initrd,一种是前面第 3 部分介绍的 linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同 Linux2.4 内核的 initrd 一样,其核心文件就是 /linuxrc。另外一种格式的 initrd 是 cpio 格式的,这种格式的 initrd 从 linux2.5 起开始引入,使用 cpio 工具生成,其核心文件不再是 /linuxrc,而是 /init,本文把这种 initrd 称为 cpio-initrd。尽管 linux2.6 内核对 cpio-initrd和 image-initrd 这两种格式的 initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍 linux2.6 内核对这两种 initrd 的处理流程。

1. boot loader 把内核以及 initrd 文件加载到内存的特定位置。

2. 内核判断initrd的文件格式,如果是cpio格式。

3. 把initrd的内容释放到rootfs中。

4. 执行initrd中的/init文件,执行到这一点,内核的工作全部结束,完全交给/init文件处理。

image-initrd的处理流程

1. boot loader把内核以及initrd文件加载到内存的特定位置。

2. 内核判断initrd的文件格式,如果不是cpio格式,把其作为image-initrd处理。

3. 内核把initrd的内容保存在rootfs下的/initrd.image文件中。

4. 内核把/initrd.image的内容读入/dev/ram0设备中,也就是读入了一个内存盘中。

5. 接着内核以可读写的方式把/dev/ram0设备挂载为原始的根文件系统。

6. .如果/dev/ram0被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

7. 执行initrd上的/linuxrc文件,linuxrc通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。

8. /linuxrc执行完毕,常规根文件系统被挂载

9. 如果常规根文件系统存在/initrd目录,那么/dev/ram0把从/移动到/initrd。否则如果/initrd目录不存在, /dev/ram0把被卸载。

10. 在常规根文件系统上进行正常启动过程 ,执行/sbin/init。

通过上面的流程介绍可知,Linux2.6内核对image-initrd的处理流程同linux2.4内核相比并没有显著的变化, cpio-initrd的处理流程相比于image-initrd的处理流程却有很大的区别,流程非常简单,在后面的源代码分析中,读者更能体会到处理的简捷。

4.cpio-initrd同image-initrd的区别与优势

没有找到正式的关于cpio-initrd同image-initrd对比的文献,根据笔者的使用体验以及内核代码的分析,总结出如下三方面的区别,这些区别也正是cpio-initrd的优势所在:

cpio-initrd的制作非常简单,通过两个命令就可以完成整个制作过程



#假设当前目录位于准备好的initrd文件系统的根目录下bash# find . | cpio -c -o > ../initrd.imgbash# gzip ../initrd.img

而传统initrd的制作过程比较繁琐,需要如下六个步骤



#假设当前目录位于准备好的initrd文件系统的根目录下bash# dd if=/dev/zero of=../initrd.img bs=512k count=5bash# mkfs.ext2 -F -m0 ../initrd.imgbash# mount -t ext2 -o loop ../initrd.img  /mntbash# cp -r  * /mntbash# umount /mntbash# gzip -9 ../initrd.img

本文不对上面命令的含义作细节的解释,因为本文主要介绍的是linux内核对initrd的处理,对上面命令不理解的读者可以参考相关文档。

通过上面initrd处理流程的介绍,cpio-initrd的处理流程显得格外简单,通过对比可知cpio-initrd的处理流程在如下两个方面得到了简化:

1. cpio-initrd并没有使用额外的ramdisk,而是把其内容输入到rootfs中,其实rootfs本身也是一个基于内存的文件系统。这样就省掉了ramdisk的挂载、卸载等步骤。

2. cpio-initrd启动完/init进程,内核的任务就结束了,剩下的工作完全交给/init处理;而对于image-initrd,内核在执行完/linuxrc进程后,还要进行一些收尾工作,并且要负责执行真正的根文件系统的/sbin/init。通过图1可以更加清晰的看出处理流程的区别:



图1内核对cpio-initrd和image-initrd处理流程示意图

如图1所示,cpio-initrd不再象image-initrd那样作为linux内核启动的一个中间步骤,而是作为内核启动的终点,内核把控制权交给cpio-initrd的/init文件后,内核的任务就结束了,所以在/init文件中,我们可以做更多的工作,而不比担心同内核后续处理的衔接问题。当然目前linux发行版的cpio-initrd的/init文件的内容还没有本质的改变,但是相信initrd职责的增加一定是一个趋势。

上面简要介绍了Linux2.4内核和2.6内核的initrd的处理流程,为了使读者对于Linux2.6内核的initrd的处理有一个更加深入的认识,下面把对Linuxe2.6内核初始化部分同initrd密切相关的代码给予一个比较细致的分析,为了讲述方便,进一步明确几个代码分析中使用的概念:

rootfs: 一个基于内存的文件系统,是linux在初始化时加载的第一个文件系统,关于它的进一步介绍可以参考文献[4]。

initramfs: initramfs同本文的主题关系不是很大,但是代码中涉及到了initramfs,为了更好的理解代码,这里对其进行简单的介绍。Initramfs是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核把这个cpio包解开,并且把其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。Linux 2.6.12内核的 initramfs还没有什么实质性的东西,一个包含完整功能的initramfs的实现可能还需要一个缓慢的过程。对于initramfs的进一步了解可以参考文献[1][2][3]。

cpio-initrd: 前面已经定义过,指linux2.6内核使用的cpio格式的initrd。

image-initrd: 前面已经定义过,专指传统的文件镜像格式的initrd。

realfs: 用户最终使用的真正的文件系统。

内核的初始化代码位于 init/main.c 中的 static int init(void * unused)函数中。同initrd的处理相关部分函数调用层次如下图,笔者按照这个层次对每一个函数都给予了比较详细的分析,为了更好的说明,下面列出的代码中删除了同本文主题不相关的部分:




 
阅读(567) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~