Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2352804
  • 博文数量: 816
  • 博客积分: 10000
  • 博客等级: 上将
  • 技术积分: 5010
  • 用 户 组: 普通用户
  • 注册时间: 2008-12-17 17:57
文章分类

全部博文(816)

文章存档

2011年(1)

2008年(815)

分类:

2008-12-17 18:06:35

请chen老大用c++帮我 解下面这个题,谢谢~~~~~~~~~~`

Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size  or greater located within the whole array. As an example, the maximal sub-rectangle of the array:




is in the lower-left-hand corner:




and has the sum of 15.


Input and Output
The input consists of an  array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by  integers separated by white-space (newlines and spaces). These  integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [-127, 127].


The output is the sum of the maximal sub-rectangle.


Sample Input

 4
 0  -2   -7   0  
 9   2   -6   2
-4   1   -4   1  
-1   8    0  -2

Sample Output

15            /*左下角 9+2+(-4)+1+(-1)+8=15*/


--------------------next---------------------

阅读(1247) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~