Chinaunix首页 | 论坛 | 博客
  • 博客访问: 680039
  • 博文数量: 103
  • 博客积分: 2532
  • 博客等级: 大尉
  • 技术积分: 2039
  • 用 户 组: 普通用户
  • 注册时间: 2008-11-26 16:07
文章分类

全部博文(103)

文章存档

2012年(38)

2011年(28)

2010年(16)

2009年(16)

2008年(5)

分类: LINUX

2012-09-07 10:41:54


本文主要描述了在android2.3平台G-sensor相关软硬件的体系架构和实现原理,按照Applications、Framework、HAL、Driver和Hardware五大层次分别介绍。

1.系统架构 (Architecture)

1.1 Android体系架构图

1.2 Sensor子系统架构图


 · Application Framework

       Sensor应用程序通过Sensor应用框架来获取sensor数据,应用框架层的Sensor Manager通过JNIC++层进行通信。

 · Sensor Libraries

       Sensor中间层主要由Sensor ManagerSensor serviceSensor硬件抽象层组成。

 · Input Subsystem

       通用的Linux输入框架专为与键盘、鼠标和触摸屏等输入设备而设计,并定义了一套标准事件集合。Sensor输入子系统采用采用了通用的Linux输入框架,它通过/sys/class/input节点和用户空间进行交互。

 · Event Dev

       Evdev提供了一种访问/dev/input/eventX输入设备事件的通用方法。

 · AccelerometerDriver

       此驱动通过SIRQI2C总线与MMA7660模组进行通信。SIRQ用来产生传感器事件中断。

 

2 应用 (Applications)

2.1 应用开发五步曲

(1)   获取传感器管理器对象;

mSensorManager =(SensorManager) getSystemService(SENSOR_SERVICE);

(2)   获取传感器对象;

mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

(3)  定义事件监听器;

mEventListener =new SensorEventListener() {

  1. @Override  
  2. publicvoid onSensorChanged(SensorEvent event) {  
  3.    float[] values = event.values;  
  4.    mTextView.setText("Accelerometer:" + values[0] +", "  
  5.           + values[1] +", " + values[2]);  
  6. }  
  7.   
  8. @Override  
  9. publicvoidonAccuracyChanged(Sensor sensor,int accuracy) {  
  10. }  

(4)   注册事件监听器;

protectedvoid onResume() {

  1. super.onResume();  
  2.   
  3. mSensorManager.registerListener(mEventListener, mSensor,  
  4.        SensorManager.SENSOR_DELAY_NORMAL);  

(5)   卸载事件监听器;

protectedvoid onPause() {

  1.    super.onPause();  
  2.     
  3.    mSensorManager.unregisterListener(mEventListener);  
  4. }  

3 框架 (Framework)

3.1 工作模型

3.1.1 SensorManager的创建


nativeClassInit(): 初始化Native类信息;
sensors_module_init(): 创建Native SensorManager实例,从SensorService读取Sensor设备列表;
sensors_module_get_next_sensor(): 从SensorService读取下一个Sensor设备;

3.1.2 SensorThread数据接收处理


sensors_create_queue(): 创建和SensorService共享的消息队列;
sensors_data_poll(): 从消息队列中读取SensorService发过来的消息;

3.1.3 SensorService的工作原理


SensorDevice::poll(): 调用HAL接口读取数据;
SensorEventConnection::sendEvents(): 往消息队列中写入消息,SensorThread后续会读取该消息;

3.1.4 SensorDevice对HAL的访问


4 硬件抽象层 (HAL)

在linux操作系统中,应用同硬件之间的交互都是通过设备驱动来实现,Android系统为了降低应用开发人员开发难度,屏蔽硬件差异,定义出硬件抽象层,为开发人员提供获取各种设备相关的信息的接口。

4.1 Sensors HAL关键流程

4.1.1 打开Sensor设备
SensorBase ::openInput() : 打开input子系统的sensor消息文件句柄;
ioctl(EVIOCGABS(...)) : 获取ABS_X/ABS_Y/ABS_Z的加速度;

4.1.2 轮循Sensor事件
InputEventCircularReader::fill(): 调用read()从input子系统中读取事件放入环形缓冲区;
InputEventCircularReader::readEvent(): 从环形缓冲区中读取事件;
InputEventCircularReader::next(): 移动环形缓冲区当前指针;

5.2 Sensors HAL关键数据结构

5.2.1 sensors_module_t
  1. struct sensors_module_t {  
  2.     struct hw_module_t common;  
  3.   
  4.     /** 
  5.      * Enumerate all available sensors. The list is returned in "list". 
  6.      * @return number of sensors in the list 
  7.      */  
  8.     int (*get_sensors_list)(struct sensors_module_t* module,  
  9.             struct sensor_t const** list);  
  10. };  

hw_get_module()会加载HAL模块,并返回HAL入口数据结构(hw_module_t)。HAL_MODULE_INFO_SYM默认是“HAL”,在hw_get_module中用dlsym获取。
  1. const struct sensors_module_t HAL_MODULE_INFO_SYM = {  
  2.     .common = {  
  3.         .tag = HARDWARE_MODULE_TAG,  
  4.         .version_major = 1,  
  5.         .version_minor = 0,  
  6.         .id = SENSORS_HARDWARE_MODULE_ID,  
  7.         .name = "MMA7660 Sensors Module",  
  8.         .author = "The Android Open Source Project",  
  9.         .methods = &sensors_module_methods,  
  10.     },  
  11.     .get_sensors_list = sensors__get_sensors_list  
  12. };  

5.2.2 hw_module_methods_t

 static struct hw_module_methods_t sensors_module_methods = {
  1. .open = open_sensors  
5.2.3 sensors_poll_context_t
  1. struct sensors_poll_context_t {  
  2.     struct sensors_poll_device_t device; // must be first  
  3.     sensors_poll_context_t();  
  4.     ~sensors_poll_context_t();  
  5.     int activate(int handle, int enabled);  
  6.     int setDelay(int handle, int64_t ns);  
  7.     int pollEvents(sensors_event_t* data, int count);  
  8.     int handleToDriver(int handle);  
  9. };  

5.2.4 sensors_poll_device_t

  1. struct sensors_poll_device_t {  
  2. struct hw_device_t common;  
  3.   
  4.     int (*activate)(struct sensors_poll_device_t *dev,  
  5.             int handle, int enabled);  
  6.   
  7.     int (*setDelay)(struct sensors_poll_device_t *dev,  
  8.             int handle, int64_t ns);  
  9.   
  10.     int (*poll)(struct sensors_poll_device_t *dev,  
  11.             sensors_event_t* data, int count);  
  12. };  

5.2.5 sensor_t
定义传感器的基本参数。
  1. static const struct sensor_t sSensorList[] = {  
  2.         { "MMA7660 3-axis Accelerometer",  
  3.                 "Freescale Semiconductor",  
  4.                 1, SENSORS_HANDLE_BASE+ID_A,  
  5.                 SENSOR_TYPE_ACCELEROMETER, 3.0f*9.81f, (3.0f*9.81f)/64.0f, 0.35f, 0, { } },  
  6. };  
  1. struct sensor_t {  
  2.     const char*     name;  
  3.     const char*     vendor;   
  4.     int             version;  
  5.     int             handle;  
  6.     int             type;  
  7.     float           maxRange;  
  8.     float           resolution;  
  9.     float           power;  
  10.     int32_t         minDelay;  
  11.     void*           reserved[8];  
  12. };  


6 驱动 (driver)

6.1 mma7660驱动框架
mma7660与主机通信是通过I2C接口,因此mma7660驱动程序采用Linux系统的I2C子系统框架来实现,主要由3部分组成:
 
(1) I2C核心
I2C核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(即“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。这部分是与平台无关的。
此部分在Linux内核的I2C驱动中实现,mma7660驱动使用其提供的功能接口来注册设备驱动。

(2) I2C总线驱动
I2C总线驱动是对I2C硬件体系结构中适配器端的实现。I2C总线驱动主要包含了I2C适配器数据结构i2c_adapter、I2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。不同的CPU平台对应着不同的I2C总线驱动。
此部分在Linux内核的I2C驱动中实现,mma7660驱动直接获取其提供的adapter,并调用I2C核心的接口来注册。

(3) I2C设备驱动
I2C设备驱动是对I2C硬件体系结构中设备端的实现。设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。I2C设备驱动主要包含了数据结构i2c_driver和i2c_client,mma7660驱动需要实现其中的成员函数。
在Linux内核源代码中的drivers目录下的i2c_dev.c文件,实现了I2C适配器设备文件的功能,应用程序通过“i2c-%d”文件名并使用文件操作接口open()、write()、read()、ioctl()和close()等来访问这个设备。应用层可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器并控制I2C设备的工作方式。

6.2 mma7660操作流程

6.2.1 初始化


6.2.2 探测设备

6.2.3 移除设备

6.2.4 采集数据

6.2.5 睡眠和唤醒
Suspend处理:关闭mma7660模组;
Resume处理:使能mma7660模组;
 
  1. static int mma7660_suspend(struct i2c_client *client, pm_message_t mesg)  
  2. {  
  3.     int result;  
  4. result = i2c_smbus_write_byte_data(client, MMA7660_MODE,   
  5.                                MK_MMA7660_MODE(0, 0, 0, 0, 0, 0, 0));  
  6.     assert(result==0);  
  7.     return result;  
  8. }  
  9.   
  10. static int mma7660_resume(struct i2c_client *client)  
  11. {  
  12.     int result;  
  13. result = i2c_smbus_write_byte_data(client, MMA7660_MODE,   
  14.                                 MK_MMA7660_MODE(0, 1, 0, 0, 0, 0, 1));  
  15.     assert(result==0);  
  16.     return result;  
  17. }  
  18.   
  19. static struct i2c_driver mma7660_driver = {  
  20.     .driver = {  
  21.         .name = MMA7660_DRV_NAME,  
  22.         .owner = THIS_MODULE,  
  23.     },  
  24.     .class = I2C_CLASS_HWMON,  
  25.     .suspend = mma7660_suspend,  
  26.     .resume = mma7660_resume,  
  27.     .probe = mma7660_probe,  
  28.     .detect = mma7660_detect,  
  29. //  .address_data = &addr_data,  
  30.     .remove = __devexit_p(mma7660_remove),  
  31.     .id_table = mma7660_id,  
  32. };  
6.3 命令行调试

6.3.1 sysfs调试接口

(1) 定义sysfs attribute相关数据结构;
 
  1. static SENSOR_DEVICE_ATTR(all_axis_force, S_IRUGO, show_xyz_force, NULL, 0);  
  2. static SENSOR_DEVICE_ATTR(x_axis_force, S_IRUGO, show_axis_force, NULL, 0);  
  3. static SENSOR_DEVICE_ATTR(y_axis_force, S_IRUGO, show_axis_force, NULL, 1);  
  4. static SENSOR_DEVICE_ATTR(z_axis_force, S_IRUGO, show_axis_force, NULL, 2);  
  5. static SENSOR_DEVICE_ATTR(orientation, S_IRUGO, show_orientation, NULL, 0);  
  6.   
  7. static struct attribute* mma7660_attrs[] =  
  8. {  
  9.     &sensor_dev_attr_all_axis_force.dev_attr.attr,  
  10.     &sensor_dev_attr_x_axis_force.dev_attr.attr,  
  11.     &sensor_dev_attr_y_axis_force.dev_attr.attr,  
  12.     &sensor_dev_attr_z_axis_force.dev_attr.attr,  
  13.     &sensor_dev_attr_orientation.dev_attr.attr,  
  14.     NULL  
  15. };  
  16.   
  17. static const struct attribute_group mma7660_group =  
  18. {  
  19.     .attrs = mma7660_attrs,  
  20. };  


(2) 在probe函数中创建sysfs文件系统;
 
  1. result = sysfs_create_group(&client->dev.kobj, &mma7660_group);  
  2. if (result != 0) {  
  3.     ERR("sysfs_create_group err\n");  
  4.     goto exit_sysfs_creat_failed;  
  5. }  


(3) 实现sysfs属性相关的读写函数;
  1. ssize_t show_orientation(struct device *dev, struct device_attribute *attr, char *buf)  
  2. {  
  3.     int result;  
  4. u8 tilt, new_orientation;  
  5.   
  6.     mma7660_read_tilt(&tilt);  
  7.     DBG("tilt [0x%x]\n", tilt);  
  8.     new_orientation = tilt & 0x1f;  
  9.     if (orientation!=new_orientation)  
  10.         orientation = new_orientation;  
  11.   
  12.     switch ((orientation>>2)&0x07) {  
  13.         case 1:  
  14.             result = sprintf(buf, "Left\n");  
  15.             break;  
  16.         case 2:  
  17.             result = sprintf(buf, "Right\n");  
  18.             break;  
  19.         case 5:  
  20.             result = sprintf(buf, "Downward\n");  
  21.             break;  
  22.         case 6:  
  23.             result = sprintf(buf, "Upward\n");  
  24.             break;  
  25.         default:  
  26.             switch(orientation & 0x03) {  
  27.                 case 1:  
  28.                     result = sprintf(buf, "Front\n");  
  29.                     break;  
  30.                 case 2:  
  31.                     result = sprintf(buf, "Back\n");  
  32.                     break;  
  33.                 default:  
  34.                     result = sprintf(buf, "Unknown\n");  
  35.         }  
  36.     }  
  37.     return result;  
  38. }  
  1. ssize_t show_xyz_force(struct device *dev, struct device_attribute *attr, char *buf)  
  2. {  
  3.     int i;  
  4.     s8 xyz[3];  
  5.   
  6.     for (i=0; i<3; i++)  
  7.         mma7660_read_xyz(i, &xyz[i]);  
  8.   
  9.     return sprintf(buf, "(%d,%d,%d)\n", xyz[0], xyz[1], xyz[2]);  
  10. }  
  11.   
  12. ssize_t show_axis_force(struct device *dev, struct device_attribute *attr, char *buf)  
  13. {  
  14.     s8 force;  
  15.     int n = to_sensor_dev_attr(attr)->index;  
  16.   
  17. mma7660_read_xyz(n, &force);  
  18.   
  19.     return sprintf(buf, "%d\n", force);  
  20. }  

 6.3.2 Gsensor调试实例
  1. /sys/devices/platform/gl5201-i2c.1/i2c-1/1-004c # ls  
  2. uevent  
  3. name  
  4. modalias  
  5. subsystem  
  6. power  
  7. driver  
  8. all_axis_force  
  9. x_axis_force  
  10. y_axis_force  
  11. z_axis_force  
  12. orientation  
  13. input  
  14. /sys/devices/platform/gl5201-i2c.1/i2c-1/1-004c # cat all_axis_force   
  15. (-1,0,22)  

7 Hardware

7.1 mma7660模组

7.2 关键特性
  • Sampling Resolution: 6bit
  • Digital Output (I2C)
  • 3mm x 3mm x 0.9mm DFN Package
  • Low Power Current Consumption: 
    Off Mode: 0.4 μA,
    Standby Mode: 2 μA, 
    Active Mode: 47 μA at 1 ODR
  • Configurable Samples per Second from 1 to 120 samples
  • Low Voltage Operation:
    Analog Voltage: 2.4 V - 3.6 V
    Digital Voltage: 1.71 V - 3.6 V
  • Auto-Wake/Sleep Feature for Low Power Consumption
  • Tilt Orientation Detection for Portrait/Landscape Capability
  • Gesture Detection Including Shake Detection and Tap Detection
7.2.1 功能模块图
7.2.2 硬件连接图
7.2.3 运动检测原理
mma7660是一种电容式3轴g-sensor,其技术原理是在wafer的表面做出梳状结构,当产生动作时,由侦测电容差来判断变形量,反推出加速度的值。
简单物理模型如下图:
7.2.4 I2C读写时序
7.2.5 工作状态机
7.2.6 寄存器定义
7.2.7 事件检测
  • 方向和摇动检测 
  • 轻拍或倾斜检测
 



 



阅读(9311) | 评论(0) | 转发(9) |
0

上一篇:Gsensor的整个系统架构

下一篇:没有了

给主人留下些什么吧!~~