Chinaunix首页 | 论坛 | 博客
  • 博客访问: 101473
  • 博文数量: 34
  • 博客积分: 2500
  • 博客等级: 少校
  • 技术积分: 307
  • 用 户 组: 普通用户
  • 注册时间: 2008-10-17 12:43
文章分类

全部博文(34)

文章存档

2011年(1)

2009年(5)

2008年(28)

我的朋友

分类: C/C++

2008-11-11 19:47:00

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):
1、稳定排序和非稳定排序
 
 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就
说这种排序方法是稳定的。反之,就是非稳定的。
 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,
a2,a3,a5就不是稳定的了。

2、内排序和外排序

 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
================================================================================
*/

 


/*
================================================
 功能:选择排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

 在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
 到倒数第二个数和最后一个数比较为止。 

 选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
 int i, j, min, t;

 for (i=0; i {
  min = i; /*假设当前下标为i的数最小,比较后再调整*/
  for (j=i+1; j  {
   if (*(x+j) < *(x+min))
   {   
    min = j; /*如果后面的数比前面的小,则记下它的下标*/
   }
  }  
  
  if (min != i) /*如果min在循环中改变了,就需要交换数据*/
  {
   t = *(x+i);
   *(x+i) = *(x+min);
   *(x+min) = t;
  }
 }
}


/*
================================================
 功能:直接插入排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

 在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
 也是排好顺序的。如此反复循环,直到全部排好顺序。
 
 直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
 int i, j, t;

 for (i=1; i {
  /*
   暂存下标为i的数。注意:下标从1开始,原因就是开始时
   第一个数即下标为0的数,前面没有任何数,单单一个,认为
   它是排好顺序的。
  */
  t=*(x+i);
  for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
  {
   *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
  }

  *(x+j+1) = t; /*找到下标为i的数的放置位置*/
 }
}


/*
================================================
 功能:冒泡排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
 而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
 小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
 求相反时,就将它们互换。
 
 下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
 位置k,这样可以减少外层循环扫描的次数。

 冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/

void bubble_sort(int *x, int n)
{
 int j, k, h, t;
  
 for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
 {
  for (j=0, k=0; j  {
   if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
   {
    t = *(x+j);
    *(x+j) = *(x+j+1);
    *(x+j+1) = t; /*完成交换*/
    k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
   }
  }
 }
}

 


/*
================================================
 功能:希尔排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
 
 在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
 并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
 增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
 多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
 了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
 记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
 对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
 一组,排序完成。
 
 下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
 以后每次减半,直到增量为1。

 希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
 int h, j, k, t;

 for (h=n/2; h>0; h=h/2) /*控制增量*/
 {
  for (j=h; j  {
   t = *(x+j);
   for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
   {
    *(x+k+h) = *(x+k);
   }
   *(x+k+h) = t;
  }
 }
}

*
================================================
 功能:快速排序
 输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:

 快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
 扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
 扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
 减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
 的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
 它左右两边的数,直到基准点的左右只有一个元素为止。它是由
 C.A.R.Hoare于1962年提出的。
 
 显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
 函数是用递归实现的,有兴趣的朋友可以改成非递归的。

 快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
 
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
 int i, j, t;

 if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
 {
  i = low;
  j = high;
  t = *(x+low); /*暂存基准点的数*/

  while (i  {
   while (it) /*在右边的只要比基准点大仍放在右边*/
   {
    j--; /*前移一个位置*/
   }

   if (i   {
    *(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
    i++; /*后移一个位置,并以此为基准点*/
   }

   while (i   {
    i++; /*后移一个位置*/
   }

   if (i   {
    *(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
    j--; /*前移一个位置*/
   }
  }

  *(x+i) = t; /*一遍扫描完后,放到适当位置*/
  quick_sort(x,low,i-1);  /*对基准点左边的数再执行快速排序*/
  quick_sort(x,i+1,high);  /*对基准点右边的数再执行快速排序*/
 }
}


/*
================================================
 功能:堆排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

 堆排序是一种树形选择排序,是对直接选择排序的有效改进。
 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
 满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
 时称之为堆。在这里只讨论满足前者条件的堆。

 由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
 很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
 初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
 使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
 交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
 的堆,并对它们作交换,最后得到有n个节点的有序序列。

 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
 交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
 实现排序的函数。

 堆排序是不稳定的。算法时间复杂度O(nlog2n)。

*/
/*
 功能:渗透建堆
 输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
 int t, k, j;

 t = *(x+s); /*暂存开始元素*/
 k = s;  /*开始元素下标*/
 j = 2*k + 1; /*右子树元素下标*/

 while (j {
  if (j  {
   j++;
  }

  if (t<*(x+j)) /*调整*/
  {
   *(x+k) = *(x+j);
   k = j; /*调整后,开始元素也随之调整*/
   j = 2*k + 1;
  }
  else /*没有需要调整了,已经是个堆了,退出循环。*/
  {
   break;
  }
 }
 
 *(x+k) = t; /*开始元素放到它正确位置*/
}


/*
 功能:堆排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
 int i, k, t;
 int *p;

 for (i=n/2-1; i>=0; i--)
 {
  sift(x,n,i); /*初始建堆*/
 } 
 
 for (k=n-1; k>=1; k--)
 {
  t = *(x+0); /*堆顶放到最后*/
  *(x+0) = *(x+k);
  *(x+k) = t;
  sift(x,k,0); /*剩下的数再建堆*/ 
 }
}


void main()

 #define MAX 4
 int *p, i, a[MAX];
 
 /*录入测试数据*/
 p = a;
 printf("Input %d number for sorting :\n",MAX);
 for (i=0; i {
  scanf("%d",p++);
 }
 printf("\n");

 /*测试选择排序*/


 p = a;
 select_sort(p,MAX);
 /**/


 /*测试直接插入排序*/

 /*
 p = a;
 insert_sort(p,MAX);
 */


 /*测试冒泡排序*/

 /*
 p = a;
 insert_sort(p,MAX);
 */

 /*测试快速排序*/

 /*
 p = a;
 quick_sort(p,0,MAX-1);
 */

 /*测试堆排序*/

 /*
 p = a;
 heap_sort(p,MAX);
 */

 for (p=a, i=0; i {
  printf("%d ",*p++);
 }
 
 printf("\n");
 system("pause");
}

阅读(402) | 评论(0) | 转发(0) |
0

上一篇:C语言高效编程秘籍

下一篇:关于回调函数

给主人留下些什么吧!~~