分类:
2008-09-09 15:21:13
1.2 ITU-T RACF的功能架构
ITU-T RACF的功能体系架构如图2所示[2]。
和TISPAN RACS的功能架构一样,RACF也由两部分组成:策略决策功能实体(PD-FE)和传送资源控制功能实体(TRC-FE)。PD-FE和传送技术无关,和业务控制功能(SCF)也无关。PD-FE基于网络策略规则、SCF提供的业务信息、网络附着属功能(NACF)提供的传送层签约信息,以及TRC-FE提供的资源接纳决策结果,然后作出网络资源接纳控制的最后决策。PD-FE基于每个流对PE-FE进行门控制,基于业务使用策略规则。TRC-FE和业务无关,但和传送技术相关。TRC-FE负责收集和维护传送网的拓扑和资源状态信息,基于拓扑、连接性、网络和节点资源的可用性,以及基于接入网中传送层签约信息等网络信息控制资源的使用,对传送网络实行接纳控制。PD-FE通过Rt参考点请求TRC-FE检测或者决定所请求的媒体流路径上的QoS资源。
传送层由策略执行功能实体(PE-FE)和传送资源执行功能实体(TRE-FE)组成。PE-FE是包到包网关,可以位于用户终端设备(CPE)和接入网络之间、接入网和核心网之间或者不同运营商网络之间,是支持动态QoS控制、端口地址转换(NAPT)控制和NAT穿越的关键节点。TRE-FE执行TRC-FE指示的传送资源策略规则,其范围和功能以及Rn参考点有待进一步研究,不在R1阶段的研究范围之内。
2、TISPAN RACS和ITU-T RACF的异同点
2.1 功能实体和参考点
从功能上看,PD-FE和SPDF相对应,但SPDF还包括TRC-FE的部分功能,如收集传送层资源使用情况。TRC-FE和A-RACF相对应,但不完全相同,TRC-FE的位置更加灵活,可以位于接入网络中,也可以位于核心网络中,而A-RACF是接入网中的一个功能。根据在网络中位置的不同,PE-FE分别和核心边界网关功能(C-BGF)、互联边界网关功能(I-BGF)以及RCEF相对应[3]。
由于功能定义的差异,在参考点方面相应地也有一些不同。首先,由于RACF架构中PD-FE可能需要给PE-FE推送一些关于底层网络的信息,如物理连接标识符和逻辑连接标识符,而这些信息需从NACF中获取,因此RACF和NACF的连接点为PD-FE,而TISPAN架构中RACS和NASS的连接点为A-RACF[4]。
ITU-T RACF的架构考虑了接入网、核心网以及外部网络全程的QoS控制,而TISPAN RACS架构在R1中只考虑对接入网进行控制,对IP核心网、外部网络等未定义。为此,相对于RACS,RACF增加了新的参考点,包括同一个运营商网络内多个PD-FE实例之间的Rd参考点,不同运营商之间PD-FE实例之间的Ri参考点,同一运营商核心网中多个TRC-FE实例之间的Rp参考点。RACF架构中涉及的参考点和RACS之间的对应关系,如表1所示
2.2 接入网类型和终端
RACF定义了3种类型的终端,第1类是没有QoS协商能力的CPE,在发起业务请求的时候不能直接请求QoS资源;第2类是具有业务层QoS协商能力的CPE,如能发出会话描述的支持会话初始协议(SIP)的电话,通过业务层信令执行QoS的协商;第3类是具有传送层QoS协商能力的CPE,如通用移动通信系统(UMTS)终端,支持资源预留协议(RSVP)或者其他传送层信令(如PDP上下文、ATM PNNI/Q.931等信令),能通过传送设备,如不对称数字用户线接入复用器(DSLAM)、服务通用分组无线业务支持节点/网关通用分组无线业务支持节点(SGSN/GGSN)等,直接执行传送层QoS的协商。因此,RACF中的CPE考虑了移动这种情况,而目前TISPAN RACS中只考虑了数字用户线(xDSL)方式的接入网,终端类型包括上述的第1类和第2类。
2.3 资源控制模式
RACF支持“拉(Pull)”和“推(Push)”两种方式的QoS资源控制模式[5],以适应不同类型的CPE。
所谓Pull方式是指SCF为CPE发起的业务向RACF请求QoS资源授权和资源预留,传送功能收到传送层QoS信令消息时主动向RACF请求决策。这种方式适用于第3类具有传送层QoS协商能力的CPE,可以通过传送层QoS信令显式地请求QoS资源预留。
所谓Push方式是指SCF为CPE发起的业务向RACF请求QoS资源授权和资源预留,如果该请求能够满足,则RACF主动将决策推送给传送实体(TE)以获得相应的传送资源。这种方式适用于第1类和第2类CPE,对于第1类CPE,SCF代表CPE决定所请求的业务的QoS需求;对于第2类CPE,SCF从应用层信令中提取QoS需求。
目前RACS只支持Push模式。
2.4 选择机制
为了能够在相关功能实体之间传递QoS请求,功能实体首先需要选择通信方,RACF定义了两种机制:静态机制和动态机制[5]。所谓静态机制是指功能实体通过静态配置的本地信息确定对端实体(例如SCF到PD-FE,PD-FE到PE-FE、TRC-FE)的IP地址或者域名。所谓动态机制是指功能实体通过动态信息(如根据业务类型和业务属性组合)确定对端实体和对应的网络地址,或使用用户标识查询域名(DNS)。目前RACF要求必须支持静态机制,动态机制任选。
RACS中AF可以通过与NASS的接口或者本地配置获得SPDF的IP地址或者域名,SPDF通过本地配置获取A-RACF和BGF的地址。
2.5 组网和互联
ITU-T考虑了两种引入RACF之后实现端到端QoS的组网模式[6],当接入网和核心网属于不同运营商时,可以由应用层SCF完成不同运营商之间的QoS协商,SCF分别和接入网以及核心网的PD-FE通过Rs参考点进行交互,接入网和核心网的PD-FE之间没有交互;也可以在RACF层完成QoS协商,SCF通过Rs参考点仅仅和核心网的PD-FE交互,接入网和核心网的PD-FE之间通过Ri参考点互通。不同运营商的核心网之间的互联与上述一致。
TISPAN是在假设核心网络部分的QoS可以得到保证的情况下,专注于解决接入网部分的QoS,因此未涉及到端到端的QoS实现。核心网和接入之间通过C-BGF进行互联,核心网之间通过I-BGF进行互联
2.6 和NACF/NASS的交互
ITU-T RACF和NACF之间交互的信息描述目前不清晰,而TISPAN中明确规定了A-RACF如何对应来自NASS和SPDF的信息,从而完成对资源接纳的控制。
3、未来研究重点
总的来说,TISPAN RACS的研究比ITU-T RACF启动早,但是ITU-T RACF的研究范围更全面,因此统一不同组织定义的架构将是各个组织今后研究的重点。
TISPAN RACS在R2阶段提出的研究内容包括:完善和ITU-T、3GPP一致的功能架构,支持多域多运营商情况下可实施的场景,支持NGN中出固定宽带接入外的其他接入方式,实现NASS和SPDF间的信息交换,支持端到端的QoS等。
ITU-T RACF中需要进一步研究的问题包括:完善和TISPAN、3GPP以及3GPP2定义的资源控制架构的一致性,统一不同运营商之间Ri参考点上传送的网络QoS信息,实现端到端的信令流,完成TRE-FE的功能定位以及TRC-FE和TRE-FE之间参考点Rn的定义,对在线计费的支持,和NASF之间的交互等。