分类:
2010-11-28 20:45:00
简介
由于在效率上相对于AB类放大器的巨大优势,D类放大器的应用越来越广泛。根据市场调研机构 Gartner的报告,D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.34亿美元成长至6.88亿美元,主要的成长动力来自于功耗敏感及空间受限的消费类电子产品。但D类放大器开关输出的拓扑结构带来了高频的EMI,如何控制好D类放大器的EMI,是系统工程师必须要考虑的方面。
变化的电压和电流信号会产生电磁场辐射,形成电磁波干扰(EMI:Electro-Magnetic Interference),这些电磁波信号会影响收音机、电视和手机等产品的正常工作。为了防止电子设备的EMI问题,世界各国都制定了相关的标准规定,如美国的联邦通信委员会(FCC:Federal Communication Commission)的认证,目的都是限制电子产品的电磁波辐射。
EMI测试是在特定的电波暗室中进行的,测量由产品中辐射出来的电磁波强度,与FCC等规范相比较,不得超过规定的最大能量。FCC规范中将产品按用途分为 CLASS A 、 CLASS B 两大类, A 类为用于商务或工业用途的产品, B 类为用于家庭用途的产品, FCC 对 B 类产品法规要求更严格。下表显示的是FCC 规范的CLASS A和CLASS B标准:
传统D类放大器开关输出的拓扑结构是一个很好的EMI发射源:如调制的开关信号,开关信号的边沿变化,电源线上变化的电流信号等都会产生大量的EMI,如下图所示。
不同的发射源对应了不同的EMI频谱,由于D类放大器的调制频率一般在250kHz到1.5MHz之间,因此调制的开关信号和电源线上变化的电流信号带来的EMI主要集中在10MHz以下的频段;而方波的边沿变化一般是在纳秒级别的,因此它们所带来的EMI主要集中在几十MHz到几GHz的高频段。
EMI主要通过PCB的走线、通孔和扬声器的连线向外辐射,较大能量的EMI辐射需要一个“高效率”的天线,对不同的频率,一个有效的天线长度是该频率波长的四分之一(λ/4),小于这个长度,就不能形成有效的对外辐射。对30MHz的频率,采用一般的FR4的PCB板,天线长度需要大于
对前面传统D类放大器的输出波形,由傅里叶分析可知,方波纳秒级的边沿变化和高频的振铃会引入非常大的高频EMI,严重影响FM、手机模拟电视等的接收效果,容易出现收听杂音或雪花台的情况,让系统工程师颇感头痛。
EMI设计就像“矛”和“盾”的关系,发射源是“矛”,发射源到敏感模块的防护是“盾”,“矛”钝“盾”坚,就不会有EMI的问题,如果“矛”很钝,但“盾”也很脆弱,那还是会有EMI的问题。因此,在使用D类放大器的时候,在PCB的布局上需要仔细考虑。 首先是输出线,要将放大器到扬声器的连线尽量缩短,这是最有效地降低EMI的方法;而且输出布线不要经过或太靠近敏感的信号线和电路。 还有电源、地线的布局也很重要。功放电源上电流波动很大,因此电源上的滤波电容要尽量靠近功放芯片放置;同时合适地进行布线以便可以预测电流走向,最好采用星形接法。 对翻盖手机的布线可能会遇到一个问题,翻盖手机的上部和下部通过柔性电缆连接,电缆中包含电源、地还有LCD显示的数据线,如果在翻盖手机的上部装有扬声器,那么输出的音频信号也需要通过这根电缆,当音频信号线靠近显示数据线时,就可能会破坏显示的数据,因此需要将这两种信号线分开,同时加上地线隔离。不过对这种情况最好还是加上磁珠和电容来抑制高频的EMI,并尽可能地将磁珠、电容靠近放大器放置。磁珠的选择也很重要,采用高阻抗、低直流电阻、大额定电流的磁珠可以很好的起到高频EMI的抑制作用,同时对放大器的其他性能影响很小。 在进行D类放大器的PCB布局时,为了抑制高频EMI,以下两点很重要: 1:输出布线尽量短而宽。 2:磁珠、电容紧靠芯片输出管脚放置,尽量减短输出管脚到磁珠的布线长度。 同时,功放的其他外围器件也尽量紧靠芯片放置,还有电源、地线采用星形接法都对提高D类功放的性能有好处。 在研发人员的努力下,已经成功解决了这一问题,在不加电感磁珠的基础上,D类音频功放IC达到同类型CLASS-AB音频放大IC的播放效果。详细的产品目录请阅:合理的PCB布局改善EMI