分类: C/C++
2008-08-04 09:36:35
一、问题的提出
编写一个耗时的单线程程序:
新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为“延时6秒”,添加按钮的响应函数,代码如下:
void CSingleThreadDlg::OnSleepSixSecond() { Sleep(6000); //延时6秒 }编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种耗时的操作,我们有必要学习——多线程编程。
二、多线程概述
进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。
线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说main或WinMain函数,将程序的启动点提供给Windows系统。主执行线程终止了,进程也就随之终止。
每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所以线程间的通讯非常方便,多线程技术的应用也较为广泛。
多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。
Win32 SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C 6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。
三、Win32 API对多线程编程的支持
Win32 提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。
1、HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId);该函数在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄,其中各参数说明如下:
如果创建成功则返回线程的句柄,否则返回NULL。
2、DWORD SuspendThread(HANDLE hThread);该函数用于挂起指定的线程,如果函数执行成功,则线程的执行被终止。
3、DWORD ResumeThread(HANDLE hThread);该函数用于结束线程的挂起状态,执行线程。
4、VOID ExitThread(DWORD dwExitCode);该函数用于线程终结自身的执行,主要在线程的执行函数中被调用。其中参数dwExitCode用来设置线程的退出码。
5、BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);一般情况下,线程运行结束之后,线程函数正常返回,但是应用程序可以调用TerminateThread强行终止某一线程的执行。各参数含义如下:
使用TerminateThread()终止某个线程的执行是不安全的,可能会引起系统不稳定;虽然该函数立即终止线程的执行,但并不释放线程所占用的资源。因此,一般不建议使用该函数。
6、BOOL PostThreadMessage(DWORD idThread, UINT Msg, WPARAM wParam, LPARAM lParam);该函数将一条消息放入到指定线程的消息队列中,并且不等到消息被该线程处理时便返回。
调用该函数时,如果即将接收消息的线程没有创建消息循环,则该函数执行失败。
四、Win32 API多线程编程例程
例程1 MultiThread1
void ThreadFunc();注意,线程函数的声明应在类CMultiThread1Dlg的外部。 在类CMultiThread1Dlg内部添加protected型变量:
HANDLE hThread; DWORD ThreadID;分别代表线程的句柄和ID。
volatile BOOL m_bRun;m_bRun 代表线程是否正在运行。
void ThreadFunc() { CTime time; CString strTime; m_bRun=TRUE; while(m_bRun) { time=CTime::GetCurrentTime(); strTime=time.Format("%H:%M:%S"); ::SetDlgItemText(AfxGetMainWnd()->m_hWnd,IDC_TIME,strTime); Sleep(1000); } }该线程函数没有参数,也不返回函数值。只要m_bRun为TRUE,线程一直运行。
void CMultiThread1Dlg::OnStart() { // TODO: Add your control notification handler code here hThread=CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ThreadFunc, NULL, 0, &ThreadID); GetDlgItem(IDC_START)->EnableWindow(FALSE); GetDlgItem(IDC_STOP)->EnableWindow(TRUE); }双击IDC_STOP按钮,完成该按钮的消息函数:
void CMultiThread1Dlg::OnStop() { // TODO: Add your control notification handler code here m_bRun=FALSE; GetDlgItem(IDC_START)->EnableWindow(TRUE); GetDlgItem(IDC_STOP)->EnableWindow(FALSE); }编译并运行该例程,体会使用Win32 API编写的多线程。
例程2 MultiThread2
该线程演示了如何传送一个一个整型的参数到一个线程中,以及如何等待一个线程完成处理。
void ThreadFunc(int integer);注意,线程函数的声明应在类CMultiThread2Dlg的外部。
HANDLE hThread; DWORD ThreadID;分别代表线程的句柄和ID。
void ThreadFunc(int integer) { int i; for(i=0;i双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread2Dlg::OnStart() { UpdateData(TRUE); int integer=m_nCount; hThread=CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ThreadFunc, (VOID*)integer, 0, &ThreadID); GetDlgItem(IDC_START)->EnableWindow(FALSE); WaitForSingleObject(hThread,INFINITE); GetDlgItem(IDC_START)->EnableWindow(TRUE); }顺便说一下WaitForSingleObject函数,其函数原型为:DWORD WaitForSingleObject(HANDLE hHandle,DWORD dwMilliseconds);
- hHandle为要监视的对象(一般为同步对象,也可以是线程)的句柄;
- dwMilliseconds为hHandle对象所设置的超时值,单位为毫秒;
当在某一线程中调用该函数时,线程暂时挂起,系统监视hHandle所指向的对象的状态。如果在挂起的dwMilliseconds毫秒内,线程所等待的对象变为有信号状态,则该函数立即返回;如果超时时间已经到达dwMilliseconds毫秒,但hHandle所指向的对象还没有变成有信号状态,函数照样返回。参数dwMilliseconds有两个具有特殊意义的值:0和INFINITE。若为0,则该函数立即返回;若为INFINITE,则线程一直被挂起,直到hHandle所指向的对象变为有信号状态时为止。
本例程调用该函数的作用是按下IDC_START按钮后,一直等到线程返回,再恢复IDC_START按钮正常状态。 编译运行该例程并细心体会。
传送一个结构体给一个线程函数也是可能的,可以通过传送一个指向结构体的指针参数来完成。 先定义一个结构体:
typedef struct { int firstArgu, long secondArgu, … }myType,*pMyType;创建线程时
CreateThread(NULL,0,threadFunc,pMyType,…);
在threadFunc函数内部,可以使用“强制转换”:
int intValue=((pMyType)lpvoid)->firstArgu; long longValue=((pMyType)lpvoid)->seconddArgu; ……例程3 MultiThread3将演示如何传送一个指向结构体的指针参数。
struct threadInfo { UINT nMilliSecond; CProgressCtrl* pctrlProgress; };线程函数的声明:
UINT ThreadFunc(LPVOID lpParam);注意,二者应在类CMultiThread3Dlg的外部。
HANDLE hThread; DWORD ThreadID;分别代表线程的句柄和ID。
void CMultiThread3Dlg::OnStart() { // TODO: Add your control notification handler code here UpdateData(TRUE); Info.nMilliSecond=m_nMilliSecond; Info.pctrlProgress=&m_ctrlProgress; hThread=CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ThreadFunc, &Info, 0, &ThreadID); /* GetDlgItem(IDC_START)->EnableWindow(FALSE); WaitForSingleObject(hThread,INFINITE); GetDlgItem(IDC_START)->EnableWindow(TRUE); */ }在函数BOOL CMultiThread3Dlg::OnInitDialog()中添加语句:
{ …… // TODO: Add extra initialization here m_ctrlProgress.SetRange(0,99); m_nMilliSecond=10; UpdateData(FALSE); return TRUE; // return TRUE unless you set the focus to a control }添加线程处理函数:UINT ThreadFunc(LPVOID lpParam)
{ threadInfo* pInfo=(threadInfo*)lpParam; for(int i=0;i<100;i ) { int nTemp=pInfo->nMilliSecond; pInfo->pctrlProgress->SetPos(i); Sleep(nTemp); } return 0; }顺便补充一点,如果你在void CMultiThread3Dlg::OnStart() 函数中添加/* */语句,编译运行你就会发现进度条不进行刷新,主线程也停止了反应。什么原因呢? 这是因为WaitForSingleObject函数等待子线程(ThreadFunc)结束时,导致了线程死锁。因为WaitForSingleObject函数会将主线程挂起(任何消息都得不到处理),而子线程ThreadFunc正在设置进度条,一直在等待主线程将刷新消息处理完毕返回才会检测通知事件。这样两个线程都在互相等待,死锁发生了,编程时应注意避免。
该例程测试在Windows下最多可创建线程的数目。
volatile BOOL m_bRunFlag=TRUE;
该变量表示是否还能继续创建线程。
添加线程函数:
DWORD WINAPI threadFunc(LPVOID threadNum) { while(m_bRunFlag) { Sleep(3000); } return 0; }只要 m_bRunFlag 变量为TRUE,线程一直运行。
void CMultiThread4Dlg::OnTest() { DWORD threadID; GetDlgItem(IDC_TEST)->EnableWindow(FALSE); long nCount=0; while(m_bRunFlag) { if(CreateThread(NULL,0,threadFunc,NULL,0,&threadID)==NULL) { m_bRunFlag=FALSE; break; } else { nCount ; } } //不断创建线程,直到再不能创建为止 m_nCount=nCount; UpdateData(FALSE); Sleep(5000); //延时5秒,等待所有创建的线程结束 GetDlgItem(IDC_TEST)->EnableWindow(TRUE); m_bRunFlag=TRUE; }
本文关联的其它文章