Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1964355
  • 博文数量: 606
  • 博客积分: 9991
  • 博客等级: 中将
  • 技术积分: 5725
  • 用 户 组: 普通用户
  • 注册时间: 2008-07-17 19:07
文章分类

全部博文(606)

文章存档

2011年(10)

2010年(67)

2009年(155)

2008年(386)

分类: Java

2010-01-07 18:43:03

向量空间模型(VSM)

向量空间模型将文档映射为一个特征向量V(d)=(t11(d);…;tn, ωn(d)),其中ti(i=1,2, …,n)为一列互不雷同的词条项,ωi(d)为ti在d中的权值, 一般被定义为ti在d中出现频率tfi(d)的函数,即 clip_image002 

在信息检索中常用的词条权值计算方法为 TF-IDF 函数clip_image004,其中N为所有文档的数目,ni为含有词条ti的文档数目。TF-IDF公式有很多变种,下面是一个常用的TF-IDF公式:

clip_image002[6]

根据TF-IDF公式,文档集中包含某一词条的文档越多,说明它区分文档类别属性的能力越低,其权值越小;另一方面,某一文档中某一词条出现的频率越高,说明它区分文档内容属性的能力越强,其权值越大。

两文档之间的相似度可以用其对应的向量之间的夹角余弦来表示,即文档di,dj的相似度可以表示为

clip_image008

进行查询的过程中,先将查询条件Q进行向量化,主要依据布尔模型:

当ti在查询条件Q中时,将对应的第i坐标置为1,否则置为0,即

clip_image010

从而文档d与查询Q的相似度为

clip_image012

根据文档之间的相似度,结合机器学习的一些算法如神经网络算法,K-近邻算法和贝叶斯分类算法等,可以将文档集分类划分为一些小的文档子集。

在查询过程中,可以计算出每个文档与查询的相似度,进而可以根据相似度的大小,将查询的结果进行排序。

向量空间模型可以实现文档的自动分类和对查询结果的相似度排序,能够有效提高检索效率;它的缺点是相似度的计算量大,当有新文档加入时,则必须重新计算词的权值

 

在向量空间模型中,文本泛指各种机器可读的记录。用D(Document)表示,特征项(Term,用t表示)是指出现在文档D中且能够代表该文档内容的基本语言单位,主要是由词或者短语构成,文本可以用特征项集表示为D(T1,T2,…,Tn),其中Tk是特征项,1<=k<=N。例如一篇文档中有a、b、c、d四个特征项,那么这篇文档就可以表示为D(a,b,c,d)。对含有n个特征项的文本而言,通常会给每个特征项赋予一定的权重表示其重要程度。即D=D(T1,W1;T2,W2;…,Tn,Wn),简记为D=D(W1,W2,…,Wn),我们把它叫做文本D的向量表示。其中Wk是Tk的权重,1<=k<=N。在上面那个例子中,假设a、b、c、d的权重分别为30,20,20,10,那么该文本的向量表示为D(30,20,20,10)。在向量空间模型中,两个文本D1和D2之间的内容相关度Sim(D1,D2)常用向量之间夹角的余弦值表示,公式为:

其中,W1k、W2k分别表示文本D1和D2第K个特征项的权值,1<=k<=N。
在自动归类中,我们可以利用类似的方法来计算待归类文档和某类目的相关度。例如文本D1的特征项为a,b,c,d,权值分别为30,20,20,10,类目C1的特征项为a,c,d,e,权值分别为40,30,20,10,则D1的向量表示为D1(30,20,20,10,0),C1的向量表示为C1(40,0,30,20,10),则根据上式计算出来的文本D1与类目C1相关度是0.86

那个相关度0.86是怎么算出来的? 

 

是这样的,抛开你的前面的赘述

在数学当中,n维向量是 V{v1, v2, v3, ..., vn}
他的模: |v| = sqrt ( v1*v1 + v2*v2 + ... + vn*vn )
两个向量的点击 m*n = n1*m1 + n2*m2 + ...... + nn*mn
相似度 = (m*n) /(|m|*|n|)
物理意义就是两个向量的空间夹角的余弦数值
对于你的例子
d1*c1 = 30*40 + 20*0 + 20*30 + 10*20 + 0*10 = 2000
|d1| = sqrt(30*30 +20*20 + 20*20 + 10*10 + 0*0) = sqrt(1800)
|c1| = sqrt(40*40 + 0*0 + 30*30 + 20*20 + 10*10) = sqrt(3000)
相似度 = d1*c1/(|d1|*|c1|)= 2000/sqrt(1800*3000)= 0.86066

阅读(1813) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~