Chinaunix首页 | 论坛 | 博客
  • 博客访问: 56057
  • 博文数量: 20
  • 博客积分: 1400
  • 博客等级: 上尉
  • 技术积分: 230
  • 用 户 组: 普通用户
  • 注册时间: 2008-07-02 22:13
文章存档

2011年(1)

2010年(2)

2008年(17)

我的朋友
最近访客

分类:

2008-09-21 12:12:04

阿基米德(Archimedes,约公元前287-212)是家、数学家,的奠基人。

【生平】

  公元前287年,阿基米德诞生于(今意大利)。他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。阿基米德的父亲是兼数学家,学识渊博,为人谦逊。他十一岁时,借助与王室的关系,被送到古希腊文化中心里亚城去学习。
  亚历山大里亚位于口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他在学习期间对数学、力学和天文学有浓厚的兴趣。在他学习天文学时,发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象。为解决用尼罗河水灌溉土地的难题,它发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。
  公元前240年,阿基米德回叙古拉,当了赫农王的顾问,帮助国王解决生产实践、军事技术和日常生活中的各种科学技术问题。
  公元前212年,军队攻陷叙拉古,正在聚精会神研究科学问题的阿基米德,不幸被蛮横的罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在上的卓越贡献。

【科学成就】

  在古希腊后期,又出现了一位最伟大的科学家,他就是阿基米德。
  他正确地得出了球体、圆柱体的体积和表面积的计算公式,提出了抛物线所围成的面积和弓形面积的计算方法。
  最著名的还是求阿基米德螺线(ρ=α×θ)所围面积的求法,这种螺线就以阿基米德的名字命名。
  锥曲线的方法解出了一元三次方程,并得到正确答案。
  阿基米德还是微积分的奠基人。他在计算球体、圆柱体和更复杂的立体的体积时,运用逐步近似而求极限的方法,从而奠定了现代微积分计算的基础。
  最有趣的是阿基米德关于体积的发现:
  有一次,阿基米德的邻居的儿子詹利到阿基米德家的小院子玩耍。詹利很调皮,也是个很讨人喜欢的孩子。
  詹利仰起通红的小脸说:“阿基米德叔叔,我可以用你圆圆的柱于作教堂的立柱吗?”
  “可以。”阿基米德说。
  小詹利把这个圆柱立好后,按照教堂门前柱子的模型,准备在柱子上加上一个圆球。他找到一个圆柱,由于它的直径和圆柱体的直径和高正好相等,所以球“扑通”一下掉入圆柱体内,倒不出来了。
  于是,詹利大声喊叫阿基米德,当阿基米德看到这一情况后,思索着:圆柱体的高度和直径相等,恰好嵌入的球体不就是圆柱体的内接球体吗?
  但是怎样才能确定圆球和圆柱体之间的关系呢?这时小詹利端来了一盆水说:“对不起,阿基米德叔叔,让我用水来给圆球冲洗一下,它会更干净的。”
  阿基米德眼睛一亮,抱着小詹利,慈爱地说:“谢谢你,小詹利,你帮助解决了一个大难题。”
  阿基米德把水倒进圆柱体,又把内接球放进去;再把球取出来,量量剩余的水有多少;然后再把圆柱体的水加满,再量量圆柱体到底能装多少水。
  这样反复倒来倒去的测试,他发现了一个惊人的奇迹:内接球的体积,恰好等于外包的圆柱体的容量的三分之二。
  他欣喜若狂,记住了这一不平凡的发现:圆柱体和它内接球体的比例,或两者之间的关系,是3∶2。
  他为这个不平凡的发现而自豪,他嘱咐后人,将一个有内接球体的圆柱体图案,刻在他的墓碑上作为墓志铭。
  阿基米德的惊人才智,引起了人们的关注和敬佩。朋友们称他为“阿尔法”,即一级数学家(α—阿尔法,是希腊字母中第一个字母)。
  阿基米德作为“阿尔法”,当之无愧。所以20世纪数学史学家E.T.贝尔说:“任何一张列出有史以来三个最伟大的数学家的名单中,必定包括阿基米德。
  “另外两个数学家通常是牛顿和高斯。不过以他们的丰功伟绩和所处的时代背景来对比,拿他们的影响当代和后世的深邃久远来比较,还应首推阿基米德。”
  我们说,阿基米德的数学成就在于他既继承和发扬了古希腊研究抽象数学的科学方法,又使数学的研究和实际应用联系起来,这在科学发展史上的意义是重大的,对后世有极为深远的影响。
  阿基米德无可争议的是古代所产生的最伟大的及科学家之一,他在诸多科学领域所作出的突出贡献,使他赢得同时代人的高度尊敬。
  力学方面:阿基米德在方面的成绩最为突出,他系统并严格的证明了,为静力学奠定了基础。在总结前人经验的基础上,阿基米德系统地研究了物体的和杠杆原理,提出了精确地确定物体重心的方法,指出在物体的中心处支起来,就能使物体保持平衡。他在研究机械的过程中,发现了杠杆定律,并利用这一原理设计制造了许多机械。他在研究浮体的过程中发现了,也就是有名的
  几何学方面:阿基米德确定了弓形、螺线、圆形的面积以及椭球体、体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“”,即我们今天所说的逐步近似求极限的方法,因而被公认为计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。


  天文学方面:阿基米德在天文学方面也有出色的成就。除了前面提到的星球仪,他还认为地球是圆球状的,并围绕着太阳旋转,这一观点比的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。但早在公元前三世纪就提出这样的见解,是很了不起的。
  著述:阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是设立若干定义和假设,再依次证明,作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》等数学著作。作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。
  其中《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有八个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有二十多万位!
  除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷手稿,原先写有,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。
  重视实践:阿基米德和时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。

【关于阿基米德的故事】

  “给我一个支点,我就能撑起地球”
  阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,从而把二者结合起来。在,公元前一千五百年前左右,就有人用杠杆来抬起重物,不过人们不知道它的道理。阿基米德潜心研究了这个现象并发现了杠杆原理。
  赫农王对阿基米德的理论一向持半信半疑的态度。他要求阿基米德将它们变成活生生的例子以使人信服。阿基米德说:“给我一个支点,我就能移动地球。”国王说:“这恐怕实现不了,你还是来帮我拖动海岸上的那条大船吧。”当时的赫农王为埃及国王制造了一条船,体积大,相当重,因为不能挪动,搁浅在海岸上很多天。阿基米德满口答应下来。 阿基米德设计了一套复杂的杠杆滑轮系统安装在船上,将绳索的一端交到赫农王手上。赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。”
  洗澡的故事
  关于阿基米德,还流传着这样一段有趣的故事。相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。
  后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他去澡堂洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻拖起。他突然悟到可以用测定固体在水中的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。(Eureka,意思是“我知道了”)。
  他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,所以证明了王冠里掺进了其他金属。
  这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律:物体在液体中所获得的浮力,等于他所排出液体的重量。后来,该定律就被命名为阿基米德定律。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。
  爱国者阿基米德
  在阿基米德晚年时,军队入侵叙拉古,阿基米德指导同胞们制造了很多攻击和防御的作战武器。当侵略军首领马塞勒塞率众攻城时,他设计的投石机把敌人打得哭爹喊娘。他制造的铁爪式起重机,能将敌船提起并倒转……
  另一个难以置信的传说是,他曾率领叙拉古人民手持凹面镜,将阳光聚焦在罗马军队的木制战舰上,使它们焚烧起来。罗马士兵在这频频的打击中已经心惊胆战,草木皆兵,一见到有绳索或木头从城里扔出,他们就惊呼“阿基米德来了”,随之抱头鼠窜。
  罗马军队被阻入城外达三年之久。最终,于公元前212年,罗马人趁叙拉古城防务稍有松懈,大举进攻闯入了城市。此时,75岁的阿基米德正在潜心研究一道深奥的数学题,一个罗马士兵闯入,用脚践踏了他所画的图形,阿基米德愤怒地与之争论,残暴无知的士兵举刀一挥,一位璀璨的科学巨星就此陨落了。

【阿基米德对后世的影响及后世对他的评价】

  有人说,是残暴和无知残害了阿基米德.据说罗马皇帝知道自己的士兵杀死了阿基米德后,很后悔.
  阿基米德早年在当时的文化中心亚历山大跟随的学生学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。
  阿基米德是数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就,特别是在几何学方面.他的数学思想中蕴涵着微积分的思想,他所缺的是没有概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
  除了伟大的牛顿和伟大的,再没有一个人象阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”,时期的等人都拿他来做自己的楷模。
  后人常把他和I.牛顿、C.F.高斯并列为有史以来三个贡献最大的数学家。阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
  后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
  《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
  《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
  《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
  阿基米德是古希腊伟大的数学家、力学家。约公元前287年出生于西西里岛的叙古拉,公元前212年卒于同地。
  【阿基米德定律】
  浸在液体中的物体,受到向上的浮力,其大小等于物体所排开的液体的重量.这就是阿基米德定律.

阿基米德的墓

  阿基米德之死,罗马将军马塞勒斯甚为悲痛,除严肃处理这个士兵外,还寻找阿基米德的亲属,给予抚恤并表示敬意,又给阿基米德立墓,聊表景仰之忱.在碑上刻着球内切于圆柱的图形,以资纪念.因阿基米德发现球的体积及表面积,都是外切圆柱体体积及表面积的 2/3.他生前曾流露过要刻此图形在墓上的愿望.
  后来事过境迁,叙拉古人竟不知珍惜这非凡的纪念物.100多年之后(公元前75年),罗马著名的政治家和作家西塞罗(Mar-cus Tullius Cicero,公元前106—前43年)在西西里担任财务官,有心去凭吊这座伟人的墓.然而当地居民竟否认它的存在.众人借助镰刀辟开小径,发现一座高出杂树不多的小圆柱,上面刻着的球和圆柱图案赫然在目,这久已被遗忘的寂寂孤坟终于被找到了.墓志铭仍依稀可见,大约有一半已被风雨腐蚀.又两千年过去了,随着时光的流逝,这座墓也消失得无影无踪.现在有一个人工凿砌的石窟,宽约十余米,内壁长满青苔,被说成是阿基米德之墓,但却无任何能证明其真实性的标志,而且“发现真正墓地”的消息时有所闻,令人难辨真伪.
阅读(1013) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~