分类: C/C++
2011-12-06 13:57:03
现在流行的进程线程同步互斥的控制机制,其实是由最原始最基本的4种方法实现的。由这4种方法组合优化就有了.Net和Java下灵活多变的,编程简便的线程进程控制手段。
1临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
2互斥量:为协调共同对一个共享资源的单独访问而设计的。
3信号量:为控制一个具有有限数量用户资源而设计。
4事 件:用来通知线程有一些事件已发生,从而启动后继任务的开始。
临界区(Critical Section)
保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线
程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操
作共享资源的目的。
临界区包含两个操作原语:
EnterCriticalSection()
进入临界区 LeaveCriticalSection()
离开临界区
EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的
LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本
进程内的线程,而不可用来同步多个进程中的线程。
MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步 处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。 Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。
代码:
view plaincopy to clipboardprint?
//CriticalSection
CCriticalSection global_CriticalSection;
// 共享资源
char global_Array[256];
//初始化共享资源
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
//写线程
UINT Global_ThreadWrite(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//进入临界区
global_CriticalSection.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=W;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//离开临界区
global_CriticalSection.Unlock();
return 0;
}
//删除线程
UINT Global_ThreadDelete(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//进入临界区
global_CriticalSection.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=D;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//离开临界区
global_CriticalSection.Unlock();
return 0;
}
//创建线程并启动线程
void CCriticalSectionsDlg::OnBnClickedButtonLock()
{
//Start the first Thread
CWinThread *ptrWrite = AfxBeginThread(Global_ThreadWrite, &m_Write, HREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrWrite->ResumeThread();
//Start the second Thread
CWinThread *ptrDelete = AfxBeginThread(Global_ThreadDelete, &m_Delete,THREAD_PRIORITY_NORMAL, 0,CREATE_SUSPENDED);
ptrDelete->ResumeThread();
}
//CriticalSection
CCriticalSection global_CriticalSection;
// 共享资源
char global_Array[256];
//初始化共享资源
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
//写线程
UINT Global_ThreadWrite(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//进入临界区
global_CriticalSection.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=W;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//离开临界区
global_CriticalSection.Unlock();
return 0;
}
//删除线程
UINT Global_ThreadDelete(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//进入临界区
global_CriticalSection.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=D;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//离开临界区
global_CriticalSection.Unlock();
return 0;
}
//创建线程并启动线程
void CCriticalSectionsDlg::OnBnClickedButtonLock()
{
//Start the first Thread
CWinThread *ptrWrite = AfxBeginThread(Global_ThreadWrite,&m_Write,THREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrWrite->ResumeThread();
//Start the second Thread
CWinThread *ptrDelete = AfxBeginThread(Global_ThreadDelete,&m_Delete,THREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrDelete->ResumeThread();
} view plaincopy to clipboardprint?
在测试程序中,Lock UnLock两个按钮分别实现,在有临界区保护共享资源的执行状态,和没有临界区保护共享资源的执行状态。
互斥量(Mutex)
互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多 个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能 够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。
互斥量包含的几个操作原语:
CreateMutex() 创建一个互斥量
OpenMutex() 打开一个互斥量
ReleaseMutex() 释放互斥量
WaitForMultipleObjects() 等待互斥量对象
同样MFC为互斥量提供有一个CMutex类。使用CMutex类实现互斥量操作非常简单,但是要特别注意对CMutex的构造函数的调用 CMutex( BOOL bInitiallyOwn = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL)
不用的参数不能乱填,乱填会出现一些意想不到的运行结果。
代码:
view plaincopy to clipboardprint?//创建互斥量
CMutex global_Mutex(0,0,0);
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
UINT Global_ThreadWrite(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
global_Mutex.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=W;
ptr->SetWindowText(global_Array);
Sleep(10);
}
global_Mutex.Unlock();
return 0;
}
UINT Global_ThreadDelete(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
global_Mutex.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=D;
ptr->SetWindowText(global_Array);
Sleep(10);
}
global_Mutex.Unlock();
return 0;
}
//创建互斥量
CMutex global_Mutex(0,0,0);
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
UINT Global_ThreadWrite(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
global_Mutex.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=W;
ptr->SetWindowText(global_Array);
Sleep(10);
}
global_Mutex.Unlock();
return 0;
}
UINT Global_ThreadDelete(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
global_Mutex.Lock();
for(int i = 0;i<256;i++)
{
global_Array[i]=D;
ptr->SetWindowText(global_Array);
Sleep(10);
}
global_Mutex.Unlock();
return 0;
}
同样在测试程序中,Lock UnLock两个按钮分别实现,在有互斥量保护共享资源的执行状态,和没有互斥量保护共享资源的执行状态。
信号量(Semaphores)
信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源 的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建 信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资 源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大 数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将 当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。
PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。信号量S是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。
P操作申请资源:
(1)S减1;
(2)若S减1后仍大于等于零,则进程继续执行
(3)若S减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转入进程调度。
V操作 释放资源:
(1)S加1;
(2)若相加结果大于零,则进程继续执行;
(3)若相加结果小于等于零,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转入进程调度。
信号量包含的几个操作原语:
CreateSemaphore() 创建一个信号量
OpenSemaphore() 打开一个信号量
ReleaseSemaphore() 释放信号量
WaitForSingleObject() 等待信号量
代码:
view plaincopy to clipboardprint?
//信号量句柄
HANDLE global_Semephore;
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
//线程1
UINT Global_ThreadOne(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//等待对共享资源请求被通过 等于 P操作
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=O;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//释放共享资源 等于 V操作
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
UINT Global_ThreadTwo(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=T;
ptr->SetWindowText(global_Array);
Sleep(10);
}
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
UINT Global_ThreadThree(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=H;
ptr->SetWindowText(global_Array);
Sleep(10);
}
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
void CSemaphoreDlg::OnBnClickedButtonOne()
{
//设置信号量 1 个资源 1同时只可以有一个线程访问
global_Semephore= CreateSemaphore(NULL, 1, 1, NULL);
this->StartThread();
}
void CSemaphoreDlg::OnBnClickedButtonTwo()
{
//设置信号量 2 个资源 2 同时只可以有两个线程访问
global_Semephore= CreateSemaphore(NULL, 2, 2, NULL);
this->StartThread();
}
void CSemaphoreDlg::OnBnClickedButtonThree()
{
//设置信号量 3 个资源 3 同时只可以有三个线程访问
global_Semephore= CreateSemaphore(NULL, 3, 3, NULL);
this->StartThread();
}
//信号量句柄
HANDLE global_Semephore;
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
//线程1
UINT Global_ThreadOne(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//等待对共享资源请求被通过 等于 P操作
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=O;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//释放共享资源 等于 V操作
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
UINT Global_ThreadTwo(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=T;
ptr->SetWindowText(global_Array);
Sleep(10);
}
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
UINT Global_ThreadThree(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
WaitForSingleObject(global_Semephore, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=H;
ptr->SetWindowText(global_Array);
Sleep(10);
}
ReleaseSemaphore(global_Semephore, 1, NULL);
return 0;
}
void CSemaphoreDlg::OnBnClickedButtonOne()
{
//设置信号量 1 个资源 1同时只可以有一个线程访问
global_Semephore= CreateSemaphore(NULL, 1, 1, NULL);
this->StartThread();
}
void CSemaphoreDlg::OnBnClickedButtonTwo()
{
//设置信号量 2 个资源 2 同时只可以有两个线程访问
global_Semephore= CreateSemaphore(NULL, 2, 2, NULL);
this->StartThread();
}
void CSemaphoreDlg::OnBnClickedButtonThree()
{
//设置信号量 3 个资源 3 同时只可以有三个线程访问
global_Semephore= CreateSemaphore(NULL, 3, 3, NULL);
this->StartThread();
}
信号量的使用特点使其更适用于对Socket(套接字)程序中线程的同步。例如,网络上的HTTP服务器要对同一时间内访问同一页面的用户数加 以限制,这时可以为每一个用户对服务器的页面请求设置一个线程,而页面则是待保护的共享资源,通过使用信号量对线程的同步作用可以确保在任一时刻无论有多 少用户对某一页面进行访问,只有不大于设定的最大用户数目的线程能够进行访问,而其他的访问企图则被挂起,只有在有用户退出对此页面的访问后才有可能进 入。 事件(Event)
事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。
信号量包含的几个操作原语: CreateEvent() 创建一个信号量 OpenEvent() 打开一个事件 SetEvent() 回置事件 WaitForSingleObject() 等待一个事件 WaitForMultipleObjects() 等待多个事件
WaitForMultipleObjects 函数原型:
WaitForMultipleObjects( IN DWORD nCount, // 等待句柄数 IN CONST HANDLE *lpHandles, //指向句柄数组 IN BOOL bWaitAll, //是否完全等待标志 IN DWORD dwMilliseconds //等待时间 )
参数nCount指定了要等待的内核对象的数目,存放这些内核对象的数组由lpHandles来指向。fWaitAll对指定的这nCount 个内核对象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。 dwMilliseconds在这里的作用与在WaitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回 WAIT_TIMEOUT。
代码:
view plaincopy to clipboardprint?
//事件数组
HANDLE global_Events[2];
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
UINT Global_ThreadOne(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
for(int i = 0;i<256;i++)
{
global_Array[i]=O;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//回置事件
SetEvent(global_Events[0]);
return 0;
}
UINT Global_ThreadTwo(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
for(int i = 0;i<256;i++)
{
global_Array[i]=T;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//回置事件
SetEvent(global_Events[1]);
return 0;
}
UINT Global_ThreadThree(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//等待两个事件都被回置
WaitForMultipleObjects(2, global_Events, true, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=H;
ptr->SetWindowText(global_Array);
Sleep(10);
}
return 0;
}
void CEventDlg::OnBnClickedButtonStart()
{
for (int i = 0; i < 2; i++)
{
//实例化事件
global_Events[i]=CreateEvent(NULL,false,false,NULL);
}
CWinThread *ptrOne = AfxBeginThread(Global_ThreadOne,&m_One,THREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrOne->ResumeThread();
//Start the second Thread
CWinThread *ptrTwo = AfxBeginThread(Global_ThreadTwo,&m_Two,THREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrTwo->ResumeThread();
//Start the Third Thread
CWinThread *ptrThree = AfxBeginThread(Global_ThreadThree,&m_Three,THREAD_PRIORITY_NORMAL,0,CREATE_SUSPENDED);
ptrThree->ResumeThread();
// TODO: Add your control notification handler code here
}
//事件数组
HANDLE global_Events[2];
// 共享资源
char global_Array[256];
void InitializeArray()
{
for(int i = 0;i<256;i++)
{
global_Array[i]=I;
}
}
UINT Global_ThreadOne(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
for(int i = 0;i<256;i++)
{
global_Array[i]=O;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//回置事件
SetEvent(global_Events[0]);
return 0;
}
UINT Global_ThreadTwo(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
for(int i = 0;i<256;i++)
{
global_Array[i]=T;
ptr->SetWindowText(global_Array);
Sleep(10);
}
//回置事件
SetEvent(global_Events[1]);
return 0;
}
UINT Global_ThreadThree(LPVOID pParam)
{
CEdit *ptr=(CEdit *)pParam;
ptr->SetWindowText("");
//等待两个事件都被回置
WaitForMultipleObjects(2, global_Events, true, INFINITE);
for(int i = 0;i<256;i++)
{
global_Array[i]=H;
ptr->SetWindowText(global_Array);
Sleep(10);
}
return 0;
}
void CEventDlg::OnBnClickedButtonStart()
{
for (int i = 0; i < 2; i++)
{
//实例化事件
global_Events[i]=CreateEvent(NULL,false,false,NULL);
}
CWinThread *ptrOne = AfxBeginThread(Global_ThreadOne, &m_One, THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);
ptrOne->ResumeThread();
//Start the second Thread
CWinThread *ptrTwo = AfxBeginThread(Global_ThreadTwo, &m_Two, THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);
ptrTwo->ResumeThread();
//Start the Third Thread
CWinThread *ptrThree = AfxBeginThread(Global_ThreadThree, &m_Three, THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);
ptrThree->ResumeThread();
}
事件可以实现不同进程中的线程同步操作,并且可以方便的实现多个线程的优先比较等待操作,例如写多个WaitForSingleObject来代替WaitForMultipleObjects从而使编程更加灵活。 总结:
1. 互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使 用临界区会带来速度上的优势并能够减少资源占用量。因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。
2. 互斥量(Mutex),信号灯(Semaphore),事件(Event)都可以被跨越进程使用来进行同步数据操作,而其他的对象与数据同步操作无关,但 对于进程和线程来讲,如果进程和线程在运行状态则为无信号状态,在退出后为有信号状态。所以可以使用WaitForSingleObject来等待进程和 线程退出。
3. 通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根 据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号灯对象可以说是一种资源计数 器。