分类: LINUX
2009-04-11 10:51:41
规则包含两个部分,一个是依赖关系,一个是生成目标的方法。
在Makefile中,规则的顺序是很重要的,因为,Makefile中只应该有一个最终目标,其它的目标都是被这个目标所连带出来的,所以一定要让make知道你的最终目标是什么。一般来说,定义在Makefile中的目标可能会有很多,但是第一条规则中的目标将被确立为最终的目标。如果第一条规则中的目标有很多个,那么,第一个目标会成为最终的目标。make所完成的也就是这个目标。
好了,还是让我们来看一看如何书写规则。
foo.o : foo.c defs.h # foo模块
cc -c -g foo.c
看到这个例子,各位应该不是很陌生了,前面也已说过,foo.o是我们的目标,foo.c和defs.h是目标所依赖的源文件,而只有一个命令“cc -c -g foo.c”(以Tab键开头)。这个规则告诉我们两件事:
1、文件的依赖关系,foo.o依赖于foo.c和defs.h的文件,如果foo.c和defs.h的文件日期要比foo.o文件日期要新,或是foo.o不存在,那么依赖关系发生。
2、如果生成(或更新)foo.o文件。也就是那个cc命令,其说明了,如何生成foo.o这个文件。(当然foo.c文件include了defs.h文件)
targets : prerequisites
command
...
或是这样:
targets : prerequisites ; command
command
...
targets是文件名,以空格分开,可以使用通配符。一般来说,我们的目标基本上是一个文件,但也有可能是多个文件。
command是命令行,如果其不与“target:prerequisites”在一行,那么,必须以[Tab键]开头,如果和prerequisites在一行,那么可以用分号做为分隔。(见上)
prerequisites也就是目标所依赖的文件(或依赖目标)。如果其中的某个文件要比目标文件要新,那么,目标就被认为是“过时的”,被认为是需要重生成的。这个在前面已经讲过了。
如果命令太长,你可以使用反斜框(‘\’)作为换行符。make对一行上有多少个字符没有限制。规则告诉make两件事,文件的依赖关系和如何成成目标文件。
一般来说,make会以UNIX的标准Shell,也就是/bin/sh来执行命令。
如果我们想定义一系列比较类似的文件,我们很自然地就想起使用通配符。make支持三各通配符:“*”,“?”和“[...]”。这是和Unix的B-Shell是相同的。
波浪号(“~”)字符在文件名中也有比较特殊的用途。如果是“~/test”,这就表示当前用户的$HOME目录下的test目录。而“~hchen/test”则表示用户hchen的宿主目录下的test目录。(这些都是Unix下的小知识了,make也支持)而在Windows或是MS-DOS下,用户没有宿主目录,那么波浪号所指的目录则根据环境变量“HOME”而定。
通配符代替了你一系列的文件,如“*.c”表示所以后缀为c的文件。一个需要我们注意的是,如果我们的文件名中有通配符,如:“*”,那么可以用转义字符“\”,如“\*”来表示真实的“*”字符,而不是任意长度的字符串。
好吧,还是先来看几个例子吧:
clean:
rm -f *.o
上面这个例子我不不多说了,这是操作系统Shell所支持的通配符。这是在命令中的通配符。
print: *.c
lpr -p $?
touch print
上面这个例子说明了通配符也可以在我们的规则中,目标print依赖于所有的[.c]文件。其中的“$?”是一个自动化变量,我会在后面给你讲述。
objects = *.o
上面这个例子,表示了,通符同样可以用在变量中。并不是说[*.o]会展开,不!objects的值就是“*.o”。Makefile中的变量其实就是C/C++中的宏。如果你要让通配符在变量中展开,也就是让objects的值是所有[.o]的文件名的集合,那么,你可以这样:
objects := $(wildcard *.o)
这种用法由关键字“wildcard”指出,关于Makefile的关键字,我们将在后面讨论。
在一些大的工程中,有大量的源文件,我们通常的做法是把这许多的源文件分类,并存放在不同的目录中。所以,当make需要去找寻文件的依赖关系时,你可以在文件前加上路径,但最好的方法是把一个路径告诉make,让make在自动去找。
Makefile文件中的特殊变量“VPATH”就是完成这个功能的,如果没有指明这个变量,make只会在当前的目录中去找寻依赖文件和目标文件。如果定义了这个变量,那么,make就会在当当前目录找不到的情况下,到所指定的目录中去找寻文件了。
VPATH = src:../headers
上面的的定义指定两个目录,“src”和“../headers”,make会按照这个顺序进行搜索。目录由“:”分隔。(当然,当前目录永远是最高优先搜索的地方)
另一个设置文件搜索路径的方法是使用make的“vpath”关键字(注意,它是全小写的),这不是变量,这是一个make的关键字,这和上面提到的那个VPATH变量很类似,但是它更为灵活。它可以指定不同的文件在不同的搜索目录中。这是一个很灵活的功能。它的使用方法有三种:
1、vpath
为符合模式
2、vpath
清除符合模式
3、vpath
清除所有已被设置好了的文件搜索目录。
vapth使用方法中的
vpath %.h ../headers
该语句表示,要求make在“../headers”目录下搜索所有以“.h”结尾的文件。(如果某文件在当前目录没有找到的话)
我们可以连续地使用vpath语句,以指定不同搜索策略。如果连续的vpath语句中出现了相同的
vpath %.c foo
vpath % blish
vpath %.c bar
其表示“.c”结尾的文件,先在“foo”目录,然后是“blish”,最后是“bar”目录。
vpath %.c foo:bar
vpath % blish
而上面的语句则表示“.c”结尾的文件,先在“foo”目录,然后是“bar”目录,最后才是“blish”目录。
最早先的一个例子中,我们提到过一个“clean”的目标,这是一个“伪目标”,
clean:
rm *.o temp
正像我们前面例子中的“clean”一样,即然我们生成了许多文件编译文件,我们也应该提供一个清除它们的“目标”以备完整地重编译而用。 (以“make clean”来使用该目标)
因为,我们并不生成“clean”这个文件。“伪目标”并不是一个文件,只是一个标签,由于“伪目标”不是文件,所以make无法生成它的依赖关系和决定它是否要执行。我们只有通过显示地指明这个“目标”才能让其生效。当然,“伪目标”的取名不能和文件名重名,不然其就失去了“伪目标”的意义了。
当然,为了避免和文件重名的这种情况,我们可以使用一个特殊的标记“.PHONY”来显示地指明一个目标是“伪目标”,向make说明,不管是否有这个文件,这个目标就是“伪目标”。
.PHONY : clean
只要有这个声明,不管是否有“clean”文件,要运行“clean”这个目标,只有“make clean”这样。于是整个过程可以这样写:
.PHONY: clean
clean:
rm *.o temp
伪目标一般没有依赖的文件。但是,我们也可以为伪目标指定所依赖的文件。伪目标同样可以作为“默认目标”,只要将其放在第一个。一个示例就是,如果你的Makefile需要一口气生成若干个可执行文件,但你只想简单地敲一个make完事,并且,所有的目标文件都写在一个Makefile中,那么你可以使用“伪目标”这个特性:
all : prog1 prog2 prog3
.PHONY : all
prog1 : prog1.o utils.o
cc -o prog1 prog1.o utils.o
prog2 : prog2.o
cc -o prog2 prog2.o
prog3 : prog3.o sort.o utils.o
cc -o prog3 prog3.o sort.o utils.o
我们知道,Makefile中的第一个目标会被作为其默认目标。我们声明了一个“all”的伪目标,其依赖于其它三个目标。由于伪目标的特性是,总是被执行的,所以其依赖的那三个目标就总是不如“all”这个目标新。所以,其它三个目标的规则总是会被决议。也就达到了我们一口气生成多个目标的目的。“.PHONY : all”声明了“all”这个目标为“伪目标”。
随便提一句,从上面的例子我们可以看出,目标也可以成为依赖。所以,伪目标同样也可成为依赖。看下面的例子:
.PHONY: cleanall cleanobj cleandiff
cleanall : cleanobj cleandiff
rm program
cleanobj :
rm *.o
cleandiff :
rm *.diff
“make clean”将清除所有要被清除的文件。“cleanobj”和“cleandiff”这两个伪目标有点像“子程序”的意思。我们可以输入“make cleanall”和“make cleanobj”和“make cleandiff”命令来达到清除不同种类文件的目的。
Makefile的规则中的目标可以不止一个,其支持多目标,有可能我们的多个目标同时依赖于一个文件,并且其生成的命令大体类似。于是我们就能把其合并起来。当然,多个目标的生成规则的执行命令是同一个,这可能会可我们带来麻烦,不过好在我们的可以使用一个自动化变量“$@”(关于自动化变量,将在后面讲述),这个变量表示着目前规则中所有的目标的集合,这样说可能很抽象,还是看一个例子吧。
bigoutput littleoutput : text.g
generate text.g -$(subst output,,$@) > $@
上述规则等价于:
bigoutput : text.g
generate text.g -big > bigoutput
littleoutput : text.g
generate text.g -little > littleoutput
其中,-$(subst output,,$@)中的“$”表示执行一个Makefile的函数,函数名为subst,后面的为参数。关于函数,将在后面讲述。这里的这个函数是截取字符串的意思,“$@”表示目标的集合,就像一个数组,“$@”依次取出目标,并执于命令。
静态模式可以更加容易地定义多目标的规则,可以让我们的规则变得更加的有弹性和灵活。我们还是先来看一下语法:
...
targets定义了一系列的目标文件,可以有通配符。是目标的一个集合。
target-parrtern是指明了targets的模式,也就是的目标集模式。
prereq-parrterns是目标的依赖模式,它对target-parrtern形成的模式再进行一次依赖目标的定义。
这样描述这三个东西,可能还是没有说清楚,还是举个例子来说明一下吧。如果我们的
所以,我们的“目标模式”或是“依赖模式”中都应该有“%”这个字符,如果你的文件名中有“%”那么你可以使用反斜杠“\”进行转义,来标明真实的“%”字符。
看一个例子:
objects = foo.o bar.o
all: $(objects)
$(objects): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@
上面的例子中,指明了我们的目标从$object中获取,“%.o”表明要所有以“.o”结尾的目标,也就是“foo.o bar.o”,也就是变量$object集合的模式,而依赖模式“%.c”则取模式“%.o”的“%”,也就是“foo bar”,并为其加下“.c”的后缀,于是,我们的依赖目标就是“foo.c bar.c”。而命令中的“$<”和“$@”则是自动化变量,“$<”表示所有的依赖目标集(也就是“foo.c bar.c”),“$@”表示目标集(也就是“foo.o bar.o”)。于是,上面的规则展开后等价于下面的规则:
foo.o : foo.c
$(CC) -c $(CFLAGS) foo.c -o foo.o
bar.o : bar.c
$(CC) -c $(CFLAGS) bar.c -o bar.o
试想,如果我们的“%.o”有几百个,那种我们只要用这种很简单的“静态模式规则”就可以写完一堆规则,实在是太有效率了。“静态模式规则”的用法很灵活,如果用得好,那会一个很强大的功能。再看一个例子:
files = foo.elc bar.o lose.o
$(filter %.o,$(files)): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@
$(filter %.elc,$(files)): %.elc: %.el
emacs -f batch-byte-compile $<
$(filter %.o,$(files))表示调用Makefile的filter函数,过滤“$filter”集,只要其中模式为“%.o”的内容。其的它内容,我就不用多说了吧。这个例字展示了Makefile中更大的弹性。
在Makefile中,我们的依赖关系可能会需要包含一系列的头文件,比如,如果我们的main.c中有一句“#include "defs.h"”,那么我们的依赖关系应该是:
main.o : main.c defs.h
但是,如果是一个比较大型的工程,你必需清楚哪些C文件包含了哪些头文件,并且,你在加入或删除头文件时,也需要小心地修改Makefile,这是一个很没有维护性的工作。为了避免这种繁重而又容易出错的事情,我们可以使用C/C++编译的一个功能。大多数的C/C++编译器都支持一个“-M”的选项,即自动找寻源文件中包含的头文件,并生成一个依赖关系。例如,如果我们执行下面的命令:
cc -M main.c
其输出是:
main.o : main.c defs.h
于是由编译器自动生成的依赖关系,这样一来,你就不必再手动书写若干文件的依赖关系,而由编译器自动生成了。需要提醒一句的是,如果你使用GNU的C/C++编译器,你得用“-MM”参数,不然,“-M”参数会把一些标准库的头文件也包含进来。
gcc -M main.c的输出是:
main.o: main.c defs.h /usr/include/stdio.h /usr/include/features.h \
/usr/include/sys/cdefs.h /usr/include/gnu/stubs.h \
/usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stddef.h \
/usr/include/bits/types.h /usr/include/bits/pthreadtypes.h \
/usr/include/bits/sched.h /usr/include/libio.h \
/usr/include/_G_config.h /usr/include/wchar.h \
/usr/include/bits/wchar.h /usr/include/gconv.h \
/usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stdarg.h \
/usr/include/bits/stdio_lim.h
gcc -MM main.c的输出则是:
main.o: main.c defs.h
那么,编译器的这个功能如何与我们的Makefile联系在一起呢。因为这样一来,我们的Makefile也要根据这些源文件重新生成,让Makefile自已依赖于源文件?这个功能并不现实,不过我们可以有其它手段来迂回地实现这一功能。GNU组织建议把编译器为每一个源文件的自动生成的依赖关系放到一个文件中,为每一个“name.c”的文件都生成一个“name.d”的Makefile文件,[.d]文件中就存放对应[.c]文件的依赖关系。
于是,我们可以写出[.c]文件和[.d]文件的依赖关系,并让make自动更新或自成[.d]文件,并把其包含在我们的主Makefile中,这样,我们就可以自动化地生成每个文件的依赖关系了。
这里,我们给出了一个模式规则来产生[.d]文件:
%.d: %.c
@set -e; rm -f $@; \
$(CC) -M $(CPPFLAGS) $< > ; \
sed 's,\($*\)\.o[ :]*,\1.o $@ : ,g' < > $@; \
rm -f
这个规则的意思是,所有的[.d]文件依赖于[.c]文件,“rm -f $@”的意思是删除所有的目标,也就是[.d]文件,第二行的意思是,为每个依赖文件“$<”,也就是[.c]文件生成依赖文件,“$@”表示模式“%.d”文件,如果有一个C文件是name.c,那么“%”就是“name”,“$$$$”意为一个随机编号,第二行生成的文件有可能是“name.d
总而言之,这个模式要做的事就是在编译器生成的依赖关系中加入[.d]文件的依赖,即把依赖关系:
main.o : main.c defs.h
转成:
main.o main.d : main.c defs.h
于是,我们的[.d]文件也会自动更新了,并会自动生成了,当然,你还可以在这个[.d]文件中加入的不只是依赖关系,包括生成的命令也可一并加入,让每个[.d]文件都包含一个完赖的规则。一旦我们完成这个工作,接下来,我们就要把这些自动生成的规则放进我们的主Makefile中。我们可以使用Makefile的“include”命令,来引入别的Makefile文件(前面讲过),例如:
sources = foo.c bar.c
include $(sources:.c=.d)
上述语句中的“$(sources:.c=.d)”中的“.c=.d”的意思是做一个替换,把变量$(sources)所有[.c]的字串都替换成[.d],关于这个“替换”的内容,在后面我会有更为详细的讲述。当然,你得注意次序,因为include是按次来载入文件,最先载入的[.d]文件中的目标会成为默认目标。
每条规则中的命令和操作系统Shell的命令行是一致的。make会一按顺序一条一条的执行命令,每条命令的开头必须以[Tab]键开头,除非,命令是紧跟在依赖规则后面的分号后的。在命令行之间中的空格或是空行会被忽略,但是如果该空格或空行是以Tab键开头的,那么make会认为其是一个空命令。
我们在UNIX下可能会使用不同的Shell,但是make的命令默认是被“/bin/sh”——UNIX的标准Shell解释执行的。除非你特别指定一个其它的Shell。Makefile中,“#”是注释符,很像C/C++中的“//”,其后的本行字符都被注释。
通常,make会把其要执行的命令行在命令执行前输出到屏幕上。当我们用“@”字符在命令行前,那么,这个命令将不被make显示出来,最具代表性的例子是,我们用这个功能来像屏幕显示一些信息。如:
@echo 正在编译XXX模块......
当make执行时,会输出“正在编译XXX模块......”字串,但不会输出命令,如果没有“@”,那么,make将输出:
echo 正在编译XXX模块......
正在编译XXX模块......
如果make执行时,带入make参数“-n”或“--just-print”,那么其只是显示命令,但不会执行命令,这个功能很有利于我们调试我们的Makefile,看看我们书写的命令是执行起来是什么样子的或是什么顺序的。
而make参数“-s”或“--slient”则是全面禁止命令的显示。
当依赖目标新于目标时,也就是当规则的目标需要被更新时,make会一条一条的执行其后的命令。需要注意的是,如果你要让上一条命令的结果应用在下一条命令时,你应该使用分号分隔这两条命令。比如你的第一条命令是cd命令,你希望第二条命令得在cd之后的基础上运行,那么你就不能把这两条命令写在两行上,而应该把这两条命令写在一行上,用分号分隔。如:
示例一:
exec:
cd /home/hchen
pwd
示例二:
exec:
cd /home/hchen; pwd
当我们执行“make exec”时,第一个例子中的cd没有作用,pwd会打印出当前的Makefile目录,而第二个例子中,cd就起作用了,pwd会打印出“/home/hchen”。
make一般是使用环境变量SHELL中所定义的系统Shell来执行命令,默认情况下使用UNIX的标准Shell——/bin/sh来执行命令。但在MS-DOS下有点特殊,因为MS-DOS下没有SHELL环境变量,当然你也可以指定。如果你指定了UNIX风格的目录形式,首先,make会在SHELL所指定的路径中找寻命令解释器,如果找不到,其会在当前盘符中的当前目录中寻找,如果再找不到,其会在PATH环境变量中所定义的所有路径中寻找。MS-DOS中,如果你定义的命令解释器没有找到,其会给你的命令解释器加上诸如“.exe”、“.com”、“.bat”、“.sh”等后缀。
每当命令运行完后,make会检测每个命令的返回码,如果命令返回成功,那么make会执行下一条命令,当规则中所有的命令成功返回后,这个规则就算是成功完成了。如果一个规则中的某个命令出错了(命令退出码非零),那么make就会终止执行当前规则,这将有可能终止所有规则的执行。
有些时候,命令的出错并不表示就是错误的。例如mkdir命令,我们一定需要建立一个目录,如果目录不存在,那么mkdir就成功执行,万事大吉,如果目录存在,那么就出错了。我们之所以使用mkdir的意思就是一定要有这样的一个目录,于是我们就不希望mkdir出错而终止规则的运行。
为了做到这一点,忽略命令的出错,我们可以在Makefile的命令行前加一个减号“-”(在Tab键之后),标记为不管命令出不出错都认为是成功的。如:
clean:
-rm -f *.o
还有一个全局的办法是,给make加上“-i”或是“--ignore-errors”参数,那么,Makefile中所有命令都会忽略错误。而如果一个规则是以“.IGNORE”作为目标的,那么这个规则中的所有命令将会忽略错误。这些是不同级别的防止命令出错的方法,你可以根据你的不同喜欢设置。
还有一个要提一下的make的参数的是“-k”或是“--keep-going”,这个参数的意思是,如果某规则中的命令出错了,那么就终目该规则的执行,但继续执行其它规则。
在一些大的工程中,我们会把我们不同模块或是不同功能的源文件放在不同的目录中,我们可以在每个目录中都书写一个该目录的Makefile,这有利于让我们的Makefile变得更加地简洁,而不至于把所有的东西全部写在一个Makefile中,这样会很难维护我们的Makefile,这个技术对于我们模块编译和分段编译有着非常大的好处。
例如,我们有一个子目录叫subdir,这个目录下有个Makefile文件,来指明了这个目录下文件的编译规则。那么我们总控的Makefile可以这样书写:
subsystem:
cd subdir && $(MAKE)
其等价于:
subsystem:
$(MAKE) -C subdir
定义$(MAKE)宏变量的意思是,也许我们的make需要一些参数,所以定义成一个变量比较利于维护。这两个例子的意思都是先进入“subdir”目录,然后执行make命令。
我们把这个Makefile叫做“总控Makefile”,总控Makefile的变量可以传递到下级的Makefile中(如果你显示的声明),但是不会覆盖下层的Makefile中所定义的变量,除非指定了“-e”参数。
如果你要传递变量到下级Makefile中,那么你可以使用这样的声明:
export
如果你不想让某些变量传递到下级Makefile中,那么你可以这样声明:
unexport
如:
示例一:
export variable = value
其等价于:
variable = value
export variable
其等价于:
export variable := value
其等价于:
variable := value
export variable
示例二:
export variable += value
其等价于:
variable += value
export variable
如果你要传递所有的变量,那么,只要一个export就行了。后面什么也不用跟,表示传递所有的变量。
需要注意的是,有两个变量,一个是SHELL,一个是MAKEFLAGS,这两个变量不管你是否export,其总是要传递到下层Makefile中,特别是MAKEFILES变量,其中包含了make的参数信息,如果我们执行“总控Makefile”时有make参数或是在上层Makefile中定义了这个变量,那么MAKEFILES变量将会是这些参数,并会传递到下层Makefile中,这是一个系统级的环境变量。
但是make命令中的有几个参数并不往下传递,它们是“-C”,“-f”,“-h”“-o”和“-W”(有关Makefile参数的细节将在后面说明),如果你不想往下层传递参数,那么,你可以这样来:
subsystem:
cd subdir && $(MAKE) MAKEFLAGS=
如果你定义了环境变量MAKEFLAGS,那么你得确信其中的选项是大家都会用到的,如果其中有“-t”,“-n”,和“-q”参数,那么将会有让你意想不到的结果,或许会让你异常地恐慌。
还有一个在“嵌套执行”中比较有用的参数,“-w”或是“--print-directory”会在make的过程中输出一些信息,让你看到目前的工作目录。比如,如果我们的下级make目录是“/home/hchen/gnu/make”,如果我们使用“make -w”来执行,那么当进入该目录时,我们会看到:
make: Entering directory `/home/hchen/gnu/make'.
而在完成下层make后离开目录时,我们会看到:
make: Leaving directory `/home/hchen/gnu/make'
当你使用“-C”参数来指定make下层Makefile时,“-w”会被自动打开的。如果参数中有“-s”(“--slient”)或是“--no-print-directory”,那么,“-w”总是失效的。
如果Makefile中出现一些相同命令序列,那么我们可以为这些相同的命令序列定义一个变量。定义这种命令序列的语法以“define”开始,以“endef”结束,如:
define run-yacc
yacc $(firstword $^)
mv y.tab.c $@
endef
这里,“run-yacc”是这个命令包的名字,其不要和Makefile中的变量重名。在“define”和“endef”中的两行就是命令序列。这个命令包中的第一个命令是运行Yacc程序,因为Yacc程序总是生成“y.tab.c”的文件,所以第二行的命令就是把这个文件改改名字。还是把这个命令包放到一个示例中来看看吧。
foo.c : foo.y
$(run-yacc)
我们可以看见,要使用这个命令包,我们就好像使用变量一样。在这个命令包的使用中,命令包“run-yacc”中的“$^”就是“foo.y”,“$@”就是“foo.c”(有关这种以“$”开头的特殊变量,我们会在后面介绍),make在执行命令包时,命令包中的每个命令会被依次独立执行。