Chinaunix首页 | 论坛 | 博客
  • 博客访问: 637364
  • 博文数量: 237
  • 博客积分: 4285
  • 博客等级: 上校
  • 技术积分: 2701
  • 用 户 组: 普通用户
  • 注册时间: 2009-11-15 14:05
文章分类

全部博文(237)

文章存档

2014年(2)

2013年(3)

2012年(47)

2011年(15)

2010年(68)

2009年(102)

我的朋友

分类: LINUX

2012-03-30 13:31:15

得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该interface的一些属性,其中bNumEndpoints是一个8位(b for byte)的数字,他代表了该接口的端点数。probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。
     /* set up the endpoint information */
     /* use only the first bulk-in and bulk-out endpoints */
     iface_desc = interface->cur_altsetting;
     for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
         endpoint = &iface_desc->endpoint[i].desc;
         if ( !dev->bulk_in_endpointAddr &&
               ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) = = USB_DIR_IN) &&
             ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) = = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk in endpoint */
              buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
              dev->bulk_in_size = buffer_size;
              dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
              dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
              if (!dev->bulk_in_buffer) {
                   err("Could not allocate bulk_in_buffer");
                   goto error;
              }
         }
         if (!dev->bulk_out_endpointAddr &&
            ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)= =USB_DIR_OUT) &&
               ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)= = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk out endpoint */
              dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
         }
     }
     if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
         err("Could not find both bulk-in and bulk-out endpoints");
         goto error;
     }
Linux USB驱动框架分析(五)
     接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下usb_set_intfdata(),他向内核注册一个data,这个data的结构可以是任意的,这段程序向内核注册了一个usb_skel结构,就是我们刚刚看到的被初始化的那个,这个data可以在以后用usb_get_intfdata来得到。
usb_set_intfdata(interface, dev);
retval = usb_register_dev(interface, &skel_class);
     然后我们向这个interface注册一个skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:
static struct usb_class_driver skel_class = {
     .name =       "skel%d",
     .fops =       &skel_fops,
     .minor_base = USB_SKEL_MINOR_BASE,
};
     它其实是一个系统定义的结构,里面包含了一名字、一个文件操作结构体还有一个次设备号的基准值。事实上它才是定义真正完成对设备IO操作的函数。所以他的核心内容应该是skel_fops。这里补充一些我个人的估计:因为usb设备可以有多个interface,每个interface所定义的IO操作可能不一样,所以向系统注册的usb_class_driver要求注册到某一个interface,而不是device,因此,usb_register_dev的第一个参数才是interface,而第二个参数就是某一个usb_class_driver。通常情况下,linux系统用主设备号来识别某类设备的驱动程序,用次设备号管理识别具体的设备,驱动程序可以依照次设备号来区分不同的设备,所以,这里的次设备好其实是用来管理不同的interface的,但由于这个范例只有一个interface,在代码上无法求证这个猜想。
static struct file_operations skel_fops = {
     .owner = THIS_MODULE,
     .read =       skel_read,
     .write =    skel_write,
     .open =       skel_open,
     .release =    skel_release,
};
     这个文件操作结构中定义了对设备的读写、打开、释放(USB设备通常使用这个术语release)。他们都是函数指针,分别指向skel_readskel_writeskel_openskel_release这四个函数,这四个函数应该有开发人员自己实现。
     当设备被拔出集线器时,usb子系统会自动地调用disconnect,他做的事情不多,最重要的是注销class_driver(交还次设备号)和interfacedata:
dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
/* give back our minor */
usb_deregister_dev(interface, &skel_class);
     然后他会用kref_put(&dev->kref, skel_delete)进行清理,kref_put的细节参见前文。
     到目前为止,我们已经分析完usb子系统要求的各个主要操作,下一部分我们在讨论一下对USB设备的IO操作。
Linux USB驱动框架分析(六)
     说到usb子系统的IO操作,不得不说usb request block,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可以看成是汽车。在一开始对USB规范细节的介绍,我们就说过USBendpoint4种不同类型,也就是说能在这条高速公路上流动的数据就有四种。但是这对汽车是没有要求的,所以urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看struct urb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下include/linux/usb.h
     在这里我们重点介绍程序中出现的几个关键字段:
struct usb_device *dev
    urb所发送的目标设备。
unsigned int pipe
     一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点相对应,我们可以通过以下几个函数来获得管道号并设置管道类型:
     unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个控制OUT端点。
     unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个控制IN端点。
     unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个批量OUT端点。
     unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个批量OUT端点。
     unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)
         把指定USB设备的指定端点设置为一个中断OUT端点。
     unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个中断OUT端点。
     unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个等时OUT端点。
     unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个等时OUT端点。
unsigned int transfer_flags
     当不使用DMA时,应该transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。
int status
     当一个urb把数据送到设备时,这个urb会由系统返回给驱动程序,并调用驱动程序的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是0
     要能够运货当然首先要有车,所以第一步当然要创建urb
    struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);
     第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数与kmalloc的标志相同。
     要释放一个urb可以用:
    void usb_free_urb(struct urb *urb);
     要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用
    void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                   void *transfer_buffer, int buffer_length,
                   usb_complete_t complete, void *context, int interval);
     这里要解释一下,transfer_buffer是一个要送/收的数据的缓冲,buffer_length是它的长度,completeurb完成回调函数的入口,context由用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。
     对于批量urb和控制urb,我们用:
    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                    void *transfer_buffer, int buffer_length, usb_complete_t complete,
                                   void *context);
    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                    unsigned char* setup_packet,void *transfer_buffer,
                     int buffer_length, usb_complete_t complete,void *context);
     控制包有一个特殊参数setup_packet,它指向即将被发送到端点的设置数据报的数据。
    对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。
     有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交urb
    int usb_submit_urb(struct urb *urb, int mem_flags);
    mem_flags有几种:GFP_ATOMICGFP_NOIOGFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC
     当我们的卡车运货之后,系统会把它调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查status字段,以确定数据的成功传输与否。下面是用urb来传送数据的细节。
/* initialize the urb properly */
usb_fill_bulk_urb(urb, dev->udev,
                    usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),
                   buf, writesize, skel_write_bulk_callback, dev);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* send the data out the bulk port */
retval = usb_submit_urb(urb, GFP_KERNEL);
     这里skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb
dev = (struct usb_skel *)urb->context;
/* sync/async unlink faults aren't errors */
if (urb->status && !(urb->status = = -ENOENT || urb->status == -ECONNRESET || urb->status = = -ESHUTDOWN)) {
         dbg("%s - nonzero write bulk status received: %d", __FUNCTION__, urb->status);
}
/* free up our allocated buffer */
usb_buffer_free(urb->dev, urb->transfer_buffer_length,
              urb->transfer_buffer, urb->transfer_dma);
     事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用urb的传输方式,而usb-skeleton的读操作正是采用这种方式实现:
/* do a blocking bulk read to get data from the device */
retval = usb_bulk_msg(dev->udev,
                           usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),
                           dev->bulk_in_buffer,
                            min(dev->bulk_in_size, count),
                           &bytes_read, 10000);
/* if the read was successful, copy the data to userspace */
if (!retval) {
         if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))
                 retval = -EFAULT;
         else
               retval = bytes_read;
}
     程序使用了usb_bulk_msg来传送数据,它的原型如下:
    int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,
                int len, int *actual length, int timeout)
     这个函数会阻塞等待数据传输完成或者等到超时,data是输入/输出缓冲,len是它的大小,actual length是实际传送的数据大小,timeout是阻塞超时。
     对于控制数据,系统提供了另外一个函数,他的原型是:
         Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
                                 __u8 requesttype, __u16 value, __u16 index, void *data,
                                 __u16 size, int timeout);
     request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。
     至此,Linux下的USB驱动框架分析基本完成了。
阅读(511) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~