在普通的二叉树中,由于没有进行处理,导致整个树出现不平衡,然而,可将堆的思想放入二叉树中,这样在一定程度上会出现二叉搜索树的平衡,这样就得到了一个新的数据结构treap.在treap中不仅有插入的键值,还附带一个堆的值段:priority,键值按照二叉树来进行处理,而priority则通过大顶堆或小顶堆的性质进行处理,如大顶堆则有一下特征:
1.如果v是u的左孩子,则key[u]
> key[v];
2.如果v是u的右孩子,则key[u]
< key[v];
3.如果v是u的孩子,则priority[u]
> priority[v].
可以证明treap的高位lgn,搜索时间为lgn,不过为了达到这样的性质,一般priority采用随机获取.
下面是插入算法:
与普通的二叉树方法类似,先查找到合适的节点,插入之后,进行堆的属性调整.
- int treap_insert(struct treap_root *root,struct treap_node *node)
-
{
-
int res = 0;
-
struct treap_node *p;
-
-
p = _treap_find(root,node->value);
-
-
-
if(!p)
-
{
-
root->root = node;
-
}
-
else
-
{
-
if(p->value > node->value)
-
{
-
p->left = node;
-
node->parent = p;
-
}
-
else
-
{
-
p->right = node;
-
node->parent = p;
-
}
-
-
//max heap or min heap
-
if((root->flag && node->priority>p->priority) || \
-
(!root->flag && node->priority < p->priority) )
-
_treap_adjust(root,node);
-
}
-
root->length ++;
-
return res;
-
}
调整与普通的堆不同,这里需要采用旋转来保证堆中的二叉树性质.
- void _treap_adjust(struct treap_root *root,struct treap_node *node)
-
{
-
long lvalue,lpriority;
-
struct treap_node *p,*q;
-
long rvalue,rpriority;
-
-
p = node;
-
q = p->parent;
-
-
while(p&&q)
-
{
-
if(root->flag && q->priority >= p->priority) break;
-
-
if(!root->flag && q->priority <= p->priority) break;
-
-
//max heap
-
if(root->flag && q->priority < p->priority)
-
{
-
if(q->left == p) right_rotate(root,q);
-
else left_rotate(root,q);
-
}
-
//min heap
-
if(!root->flag && q->priority > p->priority)
-
{
-
if(q->left == p)
-
right_rotate(root,q);
-
else left_rotate(root,q);
-
}
-
q = p->parent;
-
}
-
-
}
二叉树的删除:
先查找到后继,进行替换之后,进行堆的性质调整.
- int treap_delete(struct treap_root *root,struct treap_node *node)
-
{
-
struct treap_node *p,*q;
-
-
q = NULL;
-
-
if(!root->length) return 0;
-
-
p = treap_successor(node);
-
-
//no right child
-
if(!p) {
-
q = node->left;
-
if(root->root == node) root->root = q;
-
else
-
if(node->parent->left == node) {
-
node->parent->left = q;
-
} else {
-
node->parent->right = q;
-
}
-
-
if(q) q->parent = node->parent;
-
root->length --;
-
return 0;
-
}
-
-
if(root->root == node) root->root = p;
-
else
-
if(node->parent->left == node) node->parent->left = p;
-
else node->parent->right = p;
-
-
q = p->right;
-
-
if(p->parent!=node)
-
{
-
if(p->parent->left == p) p->parent->left = q;
-
else p->parent->right = q;
-
}
-
-
if(q&&p->parent != node)
-
q->parent = p->parent;
-
-
p->left = node->left;
-
-
if(node->left)
-
node->left->parent = p;
-
-
if(node->right != p)
-
{
-
p->right = node->right;
-
-
if(node->right)
-
node->right->parent = p;
-
-
}
-
-
p->parent = node->parent;
-
-
__adjust_child(root,p);
-
root->length --;
-
return 0;
-
}
这里进行堆的调整,也需要进行旋转控制,来代替普通的交换数值
- void __adjust_child(struct treap_root *root,struct treap_node *node)
-
{
-
struct treap_node *left = node->left;
-
struct treap_node *right = node->right;
-
struct treap_node *temp = node;
-
-
//max heap
-
if(root->flag) {
-
if(left && left->priority > temp->priority) temp = left;
-
if(right && right->priority > temp->priority) temp = right;
-
//min heap
-
} else {
-
if(left && left->priority < temp->priority) temp = left;
-
if(right && right->priority < temp->priority) temp = right;
-
}
-
-
if(temp != node)
-
{
-
if(node->left == temp) right_rotate(root,node);
-
else left_rotate(root,node);
-
__adjust_child(root,node);
-
}
-
}
treaps.rar
参考资料:
1.算法导论
2.堆的数据结构
3.treap的作者主页:
阅读(2063) | 评论(0) | 转发(0) |