推荐: blog.csdn.net/aquester https://github.com/eyjian https://www.cnblogs.com/aquester http://blog.chinaunix.net/uid/20682147.html
全部博文(595)
分类: 云计算
2019-01-06 17:00:56
Redis官方原文:。另外,从Redis-5.0开始,slave已改叫replica,配置项和部分文档及变量已做改名。
Redis集群的主从切换采取选举机制,要求少数服从多数,而参与选举的只能为master,所以只有多数master存活动时才能进行,选举由slave发起。
Redis用了和Raft算法term(任期)类似的的概念,在Redis中叫作epoch(纪元),epoch是一个无符号的64整数,一个节点的epoch从0开始。
如果一个节点接收到的epoch比自己的大,则将自已的epoch更新接收到的epoch(假定为信任网络,无拜占庭将军问题)。
每个master都会在ping和pong消息中广播自己的epoch和所负责的slots位图,slave发起选举时,创建一个新的epoch(增一),epoch的值会持久化到文件nodes.conf中,如(最新epoch值为27,最近一次投票给了27):
vars currentEpoch 27 lastVoteEpoch 27 |
只有master为fail状态,slave才会发起选举。但并不是master为fail时立即发起选举,而是延迟下列随机时长,以避免多个slaves同时发起选举(至少延迟0.5秒后才会发起选举):
500 milliseconds + random delay between 0 and 500 milliseconds + SLAVE_RANK * 1000 milliseconds |
一个slave发起选举的条件:
1) 它的master为fail状态(非pfail状态);
2) 它的master至少负责了一个slot;
3) slave和master的复制连接断开时间不超过给定的值(值可配置,目的是确保slave上的数据足够完整,所以运维时不能任由一个slave长时间不可用,需要通过监控将异常的slave及时恢复)。
发起选举前,slave先给自己的epoch(即currentEpoch)增一,然后请求其它master给自己投票。slave是通过广播FAILOVER_AUTH_REQUEST包给集中的每一个masters。
slave发起投票后,会等待至少两倍NODE_TIMEOUT时长接收投票结果,不管NODE_TIMEOUT何值,也至少会等待2秒。
master接收投票后给slave响应FAILOVER_AUTH_ACK,并且在(NODE_TIMEOUT*2)时间内不会给同一master的其它slave投票。
如果slave收到FAILOVER_AUTH_ACK响应的epoch值小于自己的epoch,则会直接丢弃。一旦slave收到多数master的FAILOVER_AUTH_ACK,则声明自己赢得了选举。
如果slave在两倍的NODE_TIMEOUT时间内(至少2秒)未赢得选举,则放弃本次选举,然后在四倍NODE_TIMEOUT时间(至少4秒)后重新发起选举。
只所以强制延迟至少0.5秒选举,是为确保master的fail状态在整个集群内传开,否则可能只有小部分master知晓,而master只会给处于fail状态的master的slaves投票。如果一个slave的master状态不是fail,则其它master不会给它投票,Redis通过八卦协议(即Gossip协议,也叫谣言协议)传播fail。而在固定延迟上再加一个随机延迟,是为了避免多个slaves同时发起选举。
slave的SLAVE_RANK是一个与master复制数有关的值,具有最新复制时SLAVE_RANK值为0,第二则为1,以此类推。这样可让具有最全数据的slave优先发起选举。当具有更高SLAVE_RANK值的slave如果没有当选,则其它slaves会很快发起选举(至少4秒后)。
在slave赢得选举后,会向集群内的所有节点广播pong,以尽快完成重新配置(体现在node.conf的更新)。当前未能到达的节点,最终也会完成重新配置。
其它节点会发现有两个相同的master负责相同的slots,这时就看哪个master的epoch值更大。
slave成为master后,并不立即服务,而是留了一个时间差。
master收到slave的投票请求FAILOVER_AUTH_REQUEST后,只有满足下列条件时,才会响应投票:
1) 对一个epoch,只投票一次;
2) 会拒绝所有更小epoch的投票请求;
3) 不会给小于lastVoteEpoch的epoch投票;
4) master只给master状态为fail的slave投票;
5) 如果slave请求的currentEpoch小于master的currentEpoch,则master忽略该请求,但下列情况例外:
① 假设master的currentEpoch值为5,lastVoteEpoch值为1(当有选举失败会出现这个情况,亦即currentEpoch值增加了,但因为选举失败,lastVoteEpoch值未变); ② slave的currentEpoch值为3; ③ slave增一,使用值为4的epoch发起选举,这个时候master会响应epoch值为5,不巧这个响应延迟了; ④ slave重新发起选举,这个时候选举用的epoch值为5(每次发起选举epoch值均需增一),凑巧这个时候原来延迟的响应达到了,这个时候原来延迟的响应被slave认为有效。 |
在master投票后,会用请求中的epoch更新本地的lastVoteEpoch,并持久化到node.conf文件中。master不会参与选择最优的slave,由于最优的slave有最好的SLAVE_RANK,因此最优的slave可相对更快发起选举。
假设一个master有A、B和C三个slaves节点,当这个master不可达时:
1) 假设slave A赢得选举成为master;
2) slave A因为网络分区不再可用;
3) slave B赢得选举;
4) slave B因为网络分区不再可用;
5) 网络分区修复,slave A又可用。
B挂了,A又可用。同一时刻,slave C发起选举,试图替代B成为master。由于slave C的master已不可用,所以它能够选举成为master,并将configEpoch值增一。而A将不能成为master,因为C已成为master,并且C的epoch值更大。
有两种哈希槽(hash slot)传播途径:
1) 心跳消息(Heartbeat messages)。节点在发送ping和pong消息时,总是携带了它所负责(或它的master所负责)的哈希槽信息;
2) 更新消息(UPDATE messages)。由于心跳包还包含了epoch信息,当消息接收者发现心跳包携带的信息陈旧时,会响应更新的信息,这样强迫发送者更新哈希槽。
测试集群运行在同一个物理机上,cluster-node-timeout值比repl-timeout值大。
cluster-slave-validity-factor值为1 cluster-node-timeout值为30000 repl-ping-slave-period值为1 repl-timeout值为10 |
master为FAIL之时的1秒左右时间内,即为主从切换之时。
master A标记fail时间:20:12:55.467 master B标记fail时间:20:12:55.467 master A投票时间:20:12:56.164 master B投票时间:20:12:56.164 slave发起选举时间:20:12:56.160 slave准备发起选举时间:20:12:55.558(延迟579毫秒) slave发现和master心跳超时时间:20:12:32.810(在这之后24秒才发生主从切换) slave收到其它master发来的自己的master为fail时间:20:12:55.467 切换前服务最后一次正常时间:(服务异常约发生在秒)20:12:22/279275 切换后服务恢复正常时间:20:12:59/278149 服务不可用时长:约37秒 |
该master ID为c67dc9e02e25f2e6321df8ac2eb4d99789917783。
30613:M 04 Jan 2019 20:12:55.467 * FAIL message received from bfad383775421b1090eaa7e0b2dcfb3b38455079 about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 // 从其它master收到44eb43e50c101c5f44f48295c42dda878b6cb3e9已fail消息 30613:M 04 Jan 2019 20:12:55.467 # Cluster state changed: fail 30613:M 04 Jan 2019 20:12:56.164 # Failover auth granted to 0ae8b5400d566907a3d8b425d983ac3b7cbd8412 for epoch 30 // 对选举投票 30613:M 04 Jan 2019 20:12:56.204 # Cluster state changed: ok 30613:M 04 Jan 2019 20:12:56.708 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 |
该master ID为bfad383775421b1090eaa7e0b2dcfb3b38455079。
30614:M 04 Jan 2019 20:12:55.467 * Marking node 44eb43e50c101c5f44f48295c42dda878b6cb3e9 as failing (quorum reached). // 标记44eb43e50c101c5f44f48295c42dda878b6cb3e9为已fail 30614:M 04 Jan 2019 20:12:56.164 # Failover auth granted to 0ae8b5400d566907a3d8b425d983ac3b7cbd8412 for epoch 30 // 对选举投票 30614:M 04 Jan 2019 20:12:56.709 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 |
slave的master ID为44eb43e50c101c5f44f48295c42dda878b6cb3e9,slave自己的ID为0ae8b5400d566907a3d8b425d983ac3b7cbd8412。
30651:S 04 Jan 2019 20:12:32.810 # MASTER timeout: no data nor PING received... // 发现master超时,master异常10秒后发现,原因是repl-timeout的值为10 30651:S 04 Jan 2019 20:12:32.810 # Connection with master lost. 30651:S 04 Jan 2019 20:12:32.810 * Caching the disconnected master state. 30651:S 04 Jan 2019 20:12:32.810 * Connecting to MASTER 1.9.16.9:4073 30651:S 04 Jan 2019 20:12:32.810 * MASTER <-> REPLICA sync started 30651:S 04 Jan 2019 20:12:32.810 * Non blocking connect for SYNC fired the event.
30651:S 04 Jan 2019 20:12:43.834 # Timeout connecting to the MASTER... 30651:S 04 Jan 2019 20:12:43.834 * Connecting to MASTER 1.9.16.9:4073 30651:S 04 Jan 2019 20:12:43.834 * MASTER <-> REPLICA sync started 30651:S 04 Jan 2019 20:12:43.834 * Non blocking connect for SYNC fired the event. 30651:S 04 Jan 2019 20:12:54.856 # Timeout connecting to the MASTER... 30651:S 04 Jan 2019 20:12:54.856 * Connecting to MASTER 1.9.16.9:4073 30651:S 04 Jan 2019 20:12:54.856 * MASTER <-> REPLICA sync started 30651:S 04 Jan 2019 20:12:54.856 * Non blocking connect for SYNC fired the event. 30651:S 04 Jan 2019 20:12:55.467 * FAIL message received from bfad383775421b1090eaa7e0b2dcfb3b38455079 about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 // 从其它master收到自己的master的FAIL消息 30651:S 04 Jan 2019 20:12:55.467 # Cluster state changed: fail 30651:S 04 Jan 2019 20:12:55.558 # Start of election delayed for 579 milliseconds (rank #0, offset 227360). // 准备发起选举,延迟579毫秒,其中500毫秒为固定延迟,279秒为随机延迟,因为RANK值为0,所以RANK延迟为0毫秒 30651:S 04 Jan 2019 20:12:56.160 # Starting a failover election for epoch 30. // 发起选举 30651:S 04 Jan 2019 20:12:56.180 # Failover election won: I'm the new master. // 赢得选举 30651:S 04 Jan 2019 20:12:56.180 # configEpoch set to 30 after successful failover 30651:M 04 Jan 2019 20:12:56.180 # Setting secondary replication ID to 154a9c2319403d610808477dcda3d4bede0f374c, valid up to offset: 227361. New replication ID is 927fb64a420236ee46d39389611ab2d8f6530b6a 30651:M 04 Jan 2019 20:12:56.181 * Discarding previously cached master state. 30651:M 04 Jan 2019 20:12:56.181 # Cluster state changed: ok 30651:M 04 Jan 2019 20:12:56.708 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 // 忽略来自非集群成员1.9.16.9:4077的消息 |
测试集群运行在同一个物理机上,cluster-node-timeout值比repl-timeout值小。
cluster-slave-validity-factor值为1 cluster-node-timeout值为10000 repl-ping-slave-period值为1 repl-timeout值为30 |
master为FAIL之时的1秒左右时间内,即为主从切换之时。
master A标记fail时间:20:37:10.398 master B标记fail时间:20:37:10.398 master A投票时间:20:37:11.084 master B投票时间:20:37:11.085 slave发起选举时间:20:37:11.077 slave准备发起选举时间:20:37:10.475(延迟539毫秒) slave发现和master心跳超时时间:没有发生,因为slave在超时之前已成为master slave收到其它master发来的自己的master为fail时间:20:37:10.398 切换前服务最后一次正常时间:20:36:55/266889(服务异常约发生在56秒) 切换后服务恢复正常时间:20:37:12/265802 服务不可用时长:约17秒 |
该master ID为c67dc9e02e25f2e6321df8ac2eb4d99789917783。
30613:M 04 Jan 2019 20:37:10.398 * Marking node 44eb43e50c101c5f44f48295c42dda878b6cb3e9 as failing (quorum reached). 30613:M 04 Jan 2019 20:37:10.398 # Cluster state changed: fail 30613:M 04 Jan 2019 20:37:11.084 # Failover auth granted to 0ae8b5400d566907a3d8b425d983ac3b7cbd8412 for epoch 32 30613:M 04 Jan 2019 20:37:11.124 # Cluster state changed: ok 30613:M 04 Jan 2019 20:37:17.560 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 |
该master ID为bfad383775421b1090eaa7e0b2dcfb3b38455079。
30614:M 04 Jan 2019 20:37:10.398 * Marking node 44eb43e50c101c5f44f48295c42dda878b6cb3e9 as failing (quorum reached). 30614:M 04 Jan 2019 20:37:11.085 # Failover auth granted to 0ae8b5400d566907a3d8b425d983ac3b7cbd8412 for epoch 32 30614:M 04 Jan 2019 20:37:17.560 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 |
slave的master ID为44eb43e50c101c5f44f48295c42dda878b6cb3e9,slave自己的ID为0ae8b5400d566907a3d8b425d983ac3b7cbd8412。
30651:S 04 Jan 2019 20:37:10.398 * FAIL message received from c67dc9e02e25f2e6321df8ac2eb4d99789917783 about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 30651:S 04 Jan 2019 20:37:10.398 # Cluster state changed: fail 30651:S 04 Jan 2019 20:37:10.475 # Start of election delayed for 539 milliseconds (rank #0, offset 228620). 30651:S 04 Jan 2019 20:37:11.077 # Starting a failover election for epoch 32. 30651:S 04 Jan 2019 20:37:11.100 # Failover election won: I'm the new master. 30651:S 04 Jan 2019 20:37:11.100 # configEpoch set to 32 after successful failover 30651:M 04 Jan 2019 20:37:11.100 # Setting secondary replication ID to 0cf19d01597610c7933b7ed67c999a631655eafc, valid up to offset: 228621. New replication ID is 53daa7fa265d982aebd3c18c07ed5f178fc3f70b 30651:M 04 Jan 2019 20:37:11.101 # Connection with master lost. 30651:M 04 Jan 2019 20:37:11.101 * Caching the disconnected master state. 30651:M 04 Jan 2019 20:37:11.101 * Discarding previously cached master state. 30651:M 04 Jan 2019 20:37:11.101 # Cluster state changed: ok 30651:M 04 Jan 2019 20:37:17.560 * Ignoring FAIL message from unknown node 082c079149a9915612d21cca8e08c831a4edeade about 44eb43e50c101c5f44f48295c42dda878b6cb3e9 |
// 摘自Redis-5.0.3
// cluster.c /* This function is called if we are a slave node and our master serving * a non-zero amount of hash slots is in FAIL state. * * The gaol of this function is: * 1) To check if we are able to perform a failover, is our data updated? * 2) Try to get elected by masters. * 3) Perform the failover informing all the other nodes. */ void clusterHandleSlaveFailover(void) { 。。。。。。 /* Check if our data is recent enough according to the slave validity * factor configured by the user. * * Check bypassed for manual failovers. */ if (server.cluster_slave_validity_factor && data_age > (((mstime_t)server.repl_ping_slave_period * 1000) + (server.cluster_node_timeout * server.cluster_slave_validity_factor))) { if (!manual_failover) { clusterLogCantFailover(CLUSTER_CANT_FAILOVER_DATA_AGE); return; } } /* If the previous failover attempt timedout and the retry time has * elapsed, we can setup a new one. */ if (auth_age > auth_retry_time) { server.cluster->failover_auth_time = mstime() + 500 + /* Fixed delay of 500 milliseconds, let FAIL msg propagate. */ random() % 500; /* Random delay between 0 and 500 milliseconds. */ server.cluster->failover_auth_count = 0; server.cluster->failover_auth_sent = 0; server.cluster->failover_auth_rank = clusterGetSlaveRank(); /* We add another delay that is proportional to the slave rank. * Specifically 1 second * rank. This way slaves that have a probably * less updated replication offset, are penalized. */ server.cluster->failover_auth_time += server.cluster->failover_auth_rank * 1000; /* However if this is a manual failover, no delay is needed. */ if (server.cluster->mf_end) { server.cluster->failover_auth_time = mstime(); server.cluster->failover_auth_rank = 0; } serverLog(LL_WARNING, "Start of election delayed for %lld milliseconds " "(rank #%d, offset %lld).", server.cluster->failover_auth_time - mstime(), server.cluster->failover_auth_rank, replicationGetSlaveOffset()); /* Now that we have a scheduled election, broadcast our offset * to all the other slaves so that they'll updated their offsets * if our offset is better. */ clusterBroadcastPong(CLUSTER_BROADCAST_LOCAL_SLAVES); return; } 。。。。。。 } |