glibc-2.14中的malloc.c源代码,供研究malloc和free实现使用:
-
/* Malloc implementation for multiple threads without lock contention.
-
Copyright (C) 1996-2009, 2010, 2011 Free Software Foundation, Inc.
-
This file is part of the GNU C Library.
-
Contributed by Wolfram Gloger <wg@malloc.de>
-
and Doug Lea <dl@cs.oswego.edu>, 2001.
-
-
The GNU C Library is free software; you can redistribute it and/or
-
modify it under the terms of the GNU Lesser General Public License as
-
published by the Free Software Foundation; either version 2.1 of the
-
License, or (at your option) any later version.
-
-
The GNU C Library is distributed in the hope that it will be useful,
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-
Lesser General Public License for more details.
-
-
You should have received a copy of the GNU Lesser General Public
-
License along with the GNU C Library; see the file COPYING.LIB. If not,
-
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-
Boston, MA 02111-1307, USA. */
-
-
/*
-
This is a version (aka ptmalloc2) of malloc/free/realloc written by
-
Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
-
-
There have been substantial changesmade after the integration into
-
glibc in all parts of the code. Do not look for much commonality
-
with the ptmalloc2 version.
-
-
* Version ptmalloc2-20011215
-
based on:
-
VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
-
-
* Quickstart
-
-
In order to compile this implementation, a Makefile is provided with
-
the ptmalloc2 distribution, which has pre-defined targets for some
-
popular systems (e.g. "make posix" for Posix threads). All that is
-
typically required with regard to compiler flags is the selection of
-
the thread package via defining one out of USE_PTHREADS, USE_THR or
-
USE_SPROC. Check the thread-m.h file for what effects this has.
-
Many/most systems will additionally require USE_TSD_DATA_HACK to be
-
defined, so this is the default for "make posix".
-
-
* Why use this malloc?
-
-
This is not the fastest, most space-conserving, most portable, or
-
most tunable malloc ever written. However it is among the fastest
-
while also being among the most space-conserving, portable and tunable.
-
Consistent balance across these factors results in a good general-purpose
-
allocator for malloc-intensive programs.
-
-
The main properties of the algorithms are:
-
* For large (>= 512 bytes) requests, it is a pure best-fit allocator,
-
with ties normally decided via FIFO (i.e. least recently used).
-
* For small (<= 64 bytes by default) requests, it is a caching
-
allocator, that maintains pools of quickly recycled chunks.
-
* In between, and for combinations of large and small requests, it does
-
the best it can trying to meet both goals at once.
-
* For very large requests (>= 128KB by default), it relies on system
-
memory mapping facilities, if supported.
-
-
For a longer but slightly out of date high-level description, see
-
http://gee.cs.oswego.edu/dl/html/malloc.html
-
-
You may already by default be using a C library containing a malloc
-
that is based on some version of this malloc (for example in
-
linux). You might still want to use the one in this file in order to
-
customize settings or to avoid overheads associated with library
-
versions.
-
-
* Contents, described in more detail in "description of public routines" below.
-
-
Standard (ANSI/SVID/...) functions:
-
malloc(size_t n);
-
calloc(size_t n_elements, size_t element_size);
-
free(Void_t* p);
-
realloc(Void_t* p, size_t n);
-
memalign(size_t alignment, size_t n);
-
valloc(size_t n);
-
mallinfo()
-
mallopt(int parameter_number, int parameter_value)
-
-
Additional functions:
-
independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
-
independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-
pvalloc(size_t n);
-
cfree(Void_t* p);
-
malloc_trim(size_t pad);
-
malloc_usable_size(Void_t* p);
-
malloc_stats();
-
-
* Vital statistics:
-
-
Supported pointer representation: 4 or 8 bytes
-
Supported size_t representation: 4 or 8 bytes
-
Note that size_t is allowed to be 4 bytes even if pointers are 8.
-
You can adjust this by defining INTERNAL_SIZE_T
-
-
Alignment: 2 * sizeof(size_t) (default)
-
(i.e., 8 byte alignment with 4byte size_t). This suffices for
-
nearly all current machines and C compilers. However, you can
-
define MALLOC_ALIGNMENT to be wider than this if necessary.
-
-
Minimum overhead per allocated chunk: 4 or 8 bytes
-
Each malloced chunk has a hidden word of overhead holding size
-
and status information.
-
-
Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
-
8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
-
-
When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
-
ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
-
needed; 4 (8) for a trailing size field and 8 (16) bytes for
-
free list pointers. Thus, the minimum allocatable size is
-
16/24/32 bytes.
-
-
Even a request for zero bytes (i.e., malloc(0)) returns a
-
pointer to something of the minimum allocatable size.
-
-
The maximum overhead wastage (i.e., number of extra bytes
-
allocated than were requested in malloc) is less than or equal
-
to the minimum size, except for requests >= mmap_threshold that
-
are serviced via mmap(), where the worst case wastage is 2 *
-
sizeof(size_t) bytes plus the remainder from a system page (the
-
minimal mmap unit); typically 4096 or 8192 bytes.
-
-
Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
-
8-byte size_t: 2^64 minus about two pages
-
-
It is assumed that (possibly signed) size_t values suffice to
-
represent chunk sizes. `Possibly signed' is due to the fact
-
that `size_t' may be defined on a system as either a signed or
-
an unsigned type. The ISO C standard says that it must be
-
unsigned, but a few systems are known not to adhere to this.
-
Additionally, even when size_t is unsigned, sbrk (which is by
-
default used to obtain memory from system) accepts signed
-
arguments, and may not be able to handle size_t-wide arguments
-
with negative sign bit. Generally, values that would
-
appear as negative after accounting for overhead and alignment
-
are supported only via mmap(), which does not have this
-
limitation.
-
-
Requests for sizes outside the allowed range will perform an optional
-
failure action and then return null. (Requests may also
-
also fail because a system is out of memory.)
-
-
Thread-safety: thread-safe unless NO_THREADS is defined
-
-
Compliance: I believe it is compliant with the 1997 Single Unix Specification
-
Also SVID/XPG, ANSI C, and probably others as well.
-
-
* Synopsis of compile-time options:
-
-
People have reported using previous versions of this malloc on all
-
versions of Unix, sometimes by tweaking some of the defines
-
below. It has been tested most extensively on Solaris and
-
Linux. It is also reported to work on WIN32 platforms.
-
People also report using it in stand-alone embedded systems.
-
-
The implementation is in straight, hand-tuned ANSI C. It is not
-
at all modular. ( It uses a lot of macros. To be at all
-
usable, this code should be compiled using an optimizing compiler
-
(for example gcc -O3) that can simplify expressions and control
-
paths. (FAQ: some macros import variables as arguments rather than
-
declare locals because people reported that some debuggers
-
otherwise get confused.)
-
-
OPTION DEFAULT VALUE
-
-
Compilation Environment options:
-
-
__STD_C derived from C compiler defines
-
WIN32 NOT defined
-
HAVE_MEMCPY defined
-
USE_MEMCPY 1 if HAVE_MEMCPY is defined
-
HAVE_MMAP defined as 1
-
MMAP_CLEARS 1
-
HAVE_MREMAP 0 unless linux defined
-
USE_ARENAS the same as HAVE_MMAP
-
malloc_getpagesize derived from system #includes, or 4096 if not
-
HAVE_USR_INCLUDE_MALLOC_H NOT defined
-
LACKS_UNISTD_H NOT defined unless WIN32
-
LACKS_SYS_PARAM_H NOT defined unless WIN32
-
LACKS_SYS_MMAN_H NOT defined unless WIN32
-
-
Changing default word sizes:
-
-
INTERNAL_SIZE_T size_t
-
MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
-
__alignof__ (long double))
-
-
Configuration and functionality options:
-
-
USE_DL_PREFIX NOT defined
-
USE_PUBLIC_MALLOC_WRAPPERS NOT defined
-
USE_MALLOC_LOCK NOT defined
-
MALLOC_DEBUG NOT defined
-
REALLOC_ZERO_BYTES_FREES 1
-
MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
-
TRIM_FASTBINS 0
-
-
Options for customizing MORECORE:
-
-
MORECORE sbrk
-
MORECORE_FAILURE -1
-
MORECORE_CONTIGUOUS 1
-
MORECORE_CANNOT_TRIM NOT defined
-
MORECORE_CLEARS 1
-
MMAP_AS_MORECORE_SIZE (1024 * 1024)
-
-
Tuning options that are also dynamically changeable via mallopt:
-
-
DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
-
DEFAULT_TRIM_THRESHOLD 128 * 1024
-
DEFAULT_TOP_PAD 0
-
DEFAULT_MMAP_THRESHOLD 128 * 1024
-
DEFAULT_MMAP_MAX 65536
-
-
There are several other #defined constants and macros that you
-
probably don't want to touch unless you are extending or adapting malloc. */
-
-
/*
-
__STD_C should be nonzero if using ANSI-standard C compiler, a C++
-
compiler, or a C compiler sufficiently close to ANSI to get away
-
with it.
-
*/
-
-
#ifndef __STD_C
-
#if defined(__STDC__) || defined(__cplusplus)
-
#define __STD_C 1
-
#else
-
#define __STD_C 0
-
#endif
-
#endif /*__STD_C*/
-
-
-
/*
-
Void_t* is the pointer type that malloc should say it returns
-
*/
-
-
#ifndef Void_t
-
#if (__STD_C || defined(WIN32))
-
#define Void_t void
-
#else
-
#define Void_t char
-
#endif
-
#endif /*Void_t*/
-
-
#if __STD_C
-
#include <stddef.h> /* for size_t */
-
#include <stdlib.h> /* for getenv(), abort() */
-
#else
-
#include <sys/types.h>
-
#endif
-
-
#include <malloc-machine.h>
-
-
#ifdef _LIBC
-
#ifdef ATOMIC_FASTBINS
-
#include <atomic.h>
-
#endif
-
#include <stdio-common/_itoa.h>
-
#include <bits/wordsize.h>
-
#include <sys/sysinfo.h>
-
#endif
-
-
#ifdef __cplusplus
-
extern "C" {
-
#endif
-
-
/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
-
-
/* #define LACKS_UNISTD_H */
-
-
#ifndef LACKS_UNISTD_H
-
#include <unistd.h>
-
#endif
-
-
/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
-
-
/* #define LACKS_SYS_PARAM_H */
-
-
-
#include <stdio.h> /* needed for malloc_stats */
-
#include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
-
-
/* For uintptr_t. */
-
#include <stdint.h>
-
-
/* For va_arg, va_start, va_end. */
-
#include <stdarg.h>
-
-
/* For writev and struct iovec. */
-
#include <sys/uio.h>
-
/* For syslog. */
-
#include <sys/syslog.h>
-
-
/* For various dynamic linking things. */
-
#include <dlfcn.h>
-
-
-
/*
-
Debugging:
-
-
Because freed chunks may be overwritten with bookkeeping fields, this
-
malloc will often die when freed memory is overwritten by user
-
programs. This can be very effective (albeit in an annoying way)
-
in helping track down dangling pointers.
-
-
If you compile with -DMALLOC_DEBUG, a number of assertion checks are
-
enabled that will catch more memory errors. You probably won't be
-
able to make much sense of the actual assertion errors, but they
-
should help you locate incorrectly overwritten memory. The checking
-
is fairly extensive, and will slow down execution
-
noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
-
will attempt to check every non-mmapped allocated and free chunk in
-
the course of computing the summmaries. (By nature, mmapped regions
-
cannot be checked very much automatically.)
-
-
Setting MALLOC_DEBUG may also be helpful if you are trying to modify
-
this code. The assertions in the check routines spell out in more
-
detail the assumptions and invariants underlying the algorithms.
-
-
Setting MALLOC_DEBUG does NOT provide an automated mechanism for
-
checking that all accesses to malloced memory stay within their
-
bounds. However, there are several add-ons and adaptations of this
-
or other mallocs available that do this.
-
*/
-
-
#ifdef NDEBUG
-
# define assert(expr) ((void) 0)
-
#else
-
# define assert(expr) \
-
((expr) \
-
? ((void) 0) \
-
: __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
-
-
extern const char *__progname;
-
-
static void
-
__malloc_assert (const char *assertion, const char *file, unsigned int line,
-
const char *function)
-
{
-
(void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
-
__progname, __progname[0] ? ": " : "",
-
file, line,
-
function ? function : "", function ? ": " : "",
-
assertion);
-
fflush (stderr);
-
abort ();
-
}
-
#endif
-
-
-
/*
-
INTERNAL_SIZE_T is the word-size used for internal bookkeeping
-
of chunk sizes.
-
-
The default version is the same as size_t.
-
-
While not strictly necessary, it is best to define this as an
-
unsigned type, even if size_t is a signed type. This may avoid some
-
artificial size limitations on some systems.
-
-
On a 64-bit machine, you may be able to reduce malloc overhead by
-
defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
-
expense of not being able to handle more than 2^32 of malloced
-
space. If this limitation is acceptable, you are encouraged to set
-
this unless you are on a platform requiring 16byte alignments. In
-
this case the alignment requirements turn out to negate any
-
potential advantages of decreasing size_t word size.
-
-
Implementors: Beware of the possible combinations of:
-
- INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
-
and might be the same width as int or as long
-
- size_t might have different width and signedness as INTERNAL_SIZE_T
-
- int and long might be 32 or 64 bits, and might be the same width
-
To deal with this, most comparisons and difference computations
-
among INTERNAL_SIZE_Ts should cast them to unsigned long, being
-
aware of the fact that casting an unsigned int to a wider long does
-
not sign-extend. (This also makes checking for negative numbers
-
awkward.) Some of these casts result in harmless compiler warnings
-
on some systems.
-
*/
-
-
#ifndef INTERNAL_SIZE_T
-
#define INTERNAL_SIZE_T size_t
-
#endif
-
-
/* The corresponding word size */
-
#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
-
-
-
/*
-
MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
-
It must be a power of two at least 2 * SIZE_SZ, even on machines
-
for which smaller alignments would suffice. It may be defined as
-
larger than this though. Note however that code and data structures
-
are optimized for the case of 8-byte alignment.
-
*/
-
-
-
#ifndef MALLOC_ALIGNMENT
-
/* XXX This is the correct definition. It differs from 2*SIZE_SZ only on
-
powerpc32. For the time being, changing this is causing more
-
compatibility problems due to malloc_get_state/malloc_set_state than
-
will returning blocks not adequately aligned for long double objects
-
under -mlong-double-128.
-
-
#define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
-
? __alignof__ (long double) : 2 * SIZE_SZ)
-
*/
-
#define MALLOC_ALIGNMENT (2 * SIZE_SZ)
-
#endif
-
-
/* The corresponding bit mask value */
-
#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
-
-
-
-
/*
-
REALLOC_ZERO_BYTES_FREES should be set if a call to
-
realloc with zero bytes should be the same as a call to free.
-
This is required by the C standard. Otherwise, since this malloc
-
returns a unique pointer for malloc(0), so does realloc(p, 0).
-
*/
-
-
#ifndef REALLOC_ZERO_BYTES_FREES
-
#define REALLOC_ZERO_BYTES_FREES 1
-
#endif
-
-
/*
-
TRIM_FASTBINS controls whether free() of a very small chunk can
-
immediately lead to trimming. Setting to true (1) can reduce memory
-
footprint, but will almost always slow down programs that use a lot
-
of small chunks.
-
-
Define this only if you are willing to give up some speed to more
-
aggressively reduce system-level memory footprint when releasing
-
memory in programs that use many small chunks. You can get
-
essentially the same effect by setting MXFAST to 0, but this can
-
lead to even greater slowdowns in programs using many small chunks.
-
TRIM_FASTBINS is an in-between compile-time option, that disables
-
only those chunks bordering topmost memory from being placed in
-
fastbins.
-
*/
-
-
#ifndef TRIM_FASTBINS
-
#define TRIM_FASTBINS 0
-
#endif
-
-
-
/*
-
USE_DL_PREFIX will prefix all public routines with the string 'dl'.
-
This is necessary when you only want to use this malloc in one part
-
of a program, using your regular system malloc elsewhere.
-
*/
-
-
/* #define USE_DL_PREFIX */
-
-
-
/*
-
Two-phase name translation.
-
All of the actual routines are given mangled names.
-
When wrappers are used, they become the public callable versions.
-
When DL_PREFIX is used, the callable names are prefixed.
-
*/
-
-
#ifdef USE_DL_PREFIX
-
#define public_cALLOc dlcalloc
-
#define public_fREe dlfree
-
#define public_cFREe dlcfree
-
#define public_mALLOc dlmalloc
-
#define public_mEMALIGn dlmemalign
-
#define public_rEALLOc dlrealloc
-
#define public_vALLOc dlvalloc
-
#define public_pVALLOc dlpvalloc
-
#define public_mALLINFo dlmallinfo
-
#define public_mALLOPt dlmallopt
-
#define public_mTRIm dlmalloc_trim
-
#define public_mSTATs dlmalloc_stats
-
#define public_mUSABLe dlmalloc_usable_size
-
#define public_iCALLOc dlindependent_calloc
-
#define public_iCOMALLOc dlindependent_comalloc
-
#define public_gET_STATe dlget_state
-
#define public_sET_STATe dlset_state
-
#else /* USE_DL_PREFIX */
-
#ifdef _LIBC
-
-
/* Special defines for the GNU C library. */
-
#define public_cALLOc __libc_calloc
-
#define public_fREe __libc_free
-
#define public_cFREe __libc_cfree
-
#define public_mALLOc __libc_malloc
-
#define public_mEMALIGn __libc_memalign
-
#define public_rEALLOc __libc_realloc
-
#define public_vALLOc __libc_valloc
-
#define public_pVALLOc __libc_pvalloc
-
#define public_mALLINFo __libc_mallinfo
-
#define public_mALLOPt __libc_mallopt
-
#define public_mTRIm __malloc_trim
-
#define public_mSTATs __malloc_stats
-
#define public_mUSABLe __malloc_usable_size
-
#define public_iCALLOc __libc_independent_calloc
-
#define public_iCOMALLOc __libc_independent_comalloc
-
#define public_gET_STATe __malloc_get_state
-
#define public_sET_STATe __malloc_set_state
-
#define malloc_getpagesize __getpagesize()
-
#define open __open
-
#define mmap __mmap
-
#define munmap __munmap
-
#define mremap __mremap
-
#define mprotect __mprotect
-
#define MORECORE (*__morecore)
-
#define MORECORE_FAILURE 0
-
-
Void_t * __default_morecore (ptrdiff_t);
-
Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
-
-
#else /* !_LIBC */
-
#define public_cALLOc calloc
-
#define public_fREe free
-
#define public_cFREe cfree
-
#define public_mALLOc malloc
-
#define public_mEMALIGn memalign
-
#define public_rEALLOc realloc
-
#define public_vALLOc valloc
-
#define public_pVALLOc pvalloc
-
#define public_mALLINFo mallinfo
-
#define public_mALLOPt mallopt
-
#define public_mTRIm malloc_trim
-
#define public_mSTATs malloc_stats
-
#define public_mUSABLe malloc_usable_size
-
#define public_iCALLOc independent_calloc
-
#define public_iCOMALLOc independent_comalloc
-
#define public_gET_STATe malloc_get_state
-
#define public_sET_STATe malloc_set_state
-
#endif /* _LIBC */
-
#endif /* USE_DL_PREFIX */
-
-
#ifndef _LIBC
-
#define __builtin_expect(expr, val) (expr)
-
-
#define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
-
#endif
-
-
/*
-
HAVE_MEMCPY should be defined if you are not otherwise using
-
ANSI STD C, but still have memcpy and memset in your C library
-
and want to use them in calloc and realloc. Otherwise simple
-
macro versions are defined below.
-
-
USE_MEMCPY should be defined as 1 if you actually want to
-
have memset and memcpy called. People report that the macro
-
versions are faster than libc versions on some systems.
-
-
Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
-
(of <= 36 bytes) are manually unrolled in realloc and calloc.
-
*/
-
-
#define HAVE_MEMCPY
-
-
#ifndef USE_MEMCPY
-
#ifdef HAVE_MEMCPY
-
#define USE_MEMCPY 1
-
#else
-
#define USE_MEMCPY 0
-
#endif
-
#endif
-
-
-
#if (__STD_C || defined(HAVE_MEMCPY))
-
-
#ifdef _LIBC
-
# include <string.h>
-
#else
-
#ifdef WIN32
-
/* On Win32 memset and memcpy are already declared in windows.h */
-
#else
-
#if __STD_C
-
void* memset(void*, int, size_t);
-
void* memcpy(void*, const void*, size_t);
-
#else
-
Void_t* memset();
-
Void_t* memcpy();
-
#endif
-
#endif
-
#endif
-
#endif
-
-
-
/* Force a value to be in a register and stop the compiler referring
-
to the source (mostly memory location) again. */
-
#define force_reg(val) \
-
({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
-
-
-
/*
-
MALLOC_FAILURE_ACTION is the action to take before "return 0" when
-
malloc fails to be able to return memory, either because memory is
-
exhausted or because of illegal arguments.
-
-
By default, sets errno if running on STD_C platform, else does nothing.
-
*/
-
-
#ifndef MALLOC_FAILURE_ACTION
-
#if __STD_C
-
#define MALLOC_FAILURE_ACTION \
-
errno = ENOMEM;
-
-
#else
-
#define MALLOC_FAILURE_ACTION
-
#endif
-
#endif
-
-
/*
-
MORECORE-related declarations. By default, rely on sbrk
-
*/
-
-
-
#ifdef LACKS_UNISTD_H
-
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-
#if __STD_C
-
extern Void_t* sbrk(ptrdiff_t);
-
#else
-
extern Void_t* sbrk();
-
#endif
-
#endif
-
#endif
-
-
/*
-
MORECORE is the name of the routine to call to obtain more memory
-
from the system. See below for general guidance on writing
-
alternative MORECORE functions, as well as a version for WIN32 and a
-
sample version for pre-OSX macos.
-
*/
-
-
#ifndef MORECORE
-
#define MORECORE sbrk
-
#endif
-
-
/*
-
MORECORE_FAILURE is the value returned upon failure of MORECORE
-
as well as mmap. Since it cannot be an otherwise valid memory address,
-
and must reflect values of standard sys calls, you probably ought not
-
try to redefine it.
-
*/
-
-
#ifndef MORECORE_FAILURE
-
#define MORECORE_FAILURE (-1)
-
#endif
-
-
/*
-
If MORECORE_CONTIGUOUS is true, take advantage of fact that
-
consecutive calls to MORECORE with positive arguments always return
-
contiguous increasing addresses. This is true of unix sbrk. Even
-
if not defined, when regions happen to be contiguous, malloc will
-
permit allocations spanning regions obtained from different
-
calls. But defining this when applicable enables some stronger
-
consistency checks and space efficiencies.
-
*/
-
-
#ifndef MORECORE_CONTIGUOUS
-
#define MORECORE_CONTIGUOUS 1
-
#endif
-
-
/*
-
Define MORECORE_CANNOT_TRIM if your version of MORECORE
-
cannot release space back to the system when given negative
-
arguments. This is generally necessary only if you are using
-
a hand-crafted MORECORE function that cannot handle negative arguments.
-
*/
-
-
/* #define MORECORE_CANNOT_TRIM */
-
-
/* MORECORE_CLEARS (default 1)
-
The degree to which the routine mapped to MORECORE zeroes out
-
memory: never (0), only for newly allocated space (1) or always
-
(2). The distinction between (1) and (2) is necessary because on
-
some systems, if the application first decrements and then
-
increments the break value, the contents of the reallocated space
-
are unspecified.
-
*/
-
-
#ifndef MORECORE_CLEARS
-
#define MORECORE_CLEARS 1
-
#endif
-
-
-
/*
-
Define HAVE_MMAP as true to optionally make malloc() use mmap() to
-
allocate very large blocks. These will be returned to the
-
operating system immediately after a free(). Also, if mmap
-
is available, it is used as a backup strategy in cases where
-
MORECORE fails to provide space from system.
-
-
This malloc is best tuned to work with mmap for large requests.
-
If you do not have mmap, operations involving very large chunks (1MB
-
or so) may be slower than you'd like.
-
*/
-
-
#ifndef HAVE_MMAP
-
#define HAVE_MMAP 1
-
-
/*
-
Standard unix mmap using /dev/zero clears memory so calloc doesn't
-
need to.
-
*/
-
-
#ifndef MMAP_CLEARS
-
#define MMAP_CLEARS 1
-
#endif
-
-
#else /* no mmap */
-
#ifndef MMAP_CLEARS
-
#define MMAP_CLEARS 0
-
#endif
-
#endif
-
-
-
/*
-
MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
-
sbrk fails, and mmap is used as a backup (which is done only if
-
HAVE_MMAP). The value must be a multiple of page size. This
-
backup strategy generally applies only when systems have "holes" in
-
address space, so sbrk cannot perform contiguous expansion, but
-
there is still space available on system. On systems for which
-
this is known to be useful (i.e. most linux kernels), this occurs
-
only when programs allocate huge amounts of memory. Between this,
-
and the fact that mmap regions tend to be limited, the size should
-
be large, to avoid too many mmap calls and thus avoid running out
-
of kernel resources.
-
*/
-
-
#ifndef MMAP_AS_MORECORE_SIZE
-
#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
-
#endif
-
-
/*
-
Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
-
large blocks. This is currently only possible on Linux with
-
kernel versions newer than 1.3.77.
-
*/
-
-
#ifndef HAVE_MREMAP
-
#ifdef linux
-
#define HAVE_MREMAP 1
-
#else
-
#define HAVE_MREMAP 0
-
#endif
-
-
#endif /* HAVE_MMAP */
-
-
/* Define USE_ARENAS to enable support for multiple `arenas'. These
-
are allocated using mmap(), are necessary for threads and
-
occasionally useful to overcome address space limitations affecting
-
sbrk(). */
-
-
#ifndef USE_ARENAS
-
#define USE_ARENAS HAVE_MMAP
-
#endif
-
-
-
/*
-
The system page size. To the extent possible, this malloc manages
-
memory from the system in page-size units. Note that this value is
-
cached during initialization into a field of malloc_state. So even
-
if malloc_getpagesize is a function, it is only called once.
-
-
The following mechanics for getpagesize were adapted from bsd/gnu
-
getpagesize.h. If none of the system-probes here apply, a value of
-
4096 is used, which should be OK: If they don't apply, then using
-
the actual value probably doesn't impact performance.
-
*/
-
-
-
#ifndef malloc_getpagesize
-
-
#ifndef LACKS_UNISTD_H
-
# include <unistd.h>
-
#endif
-
-
# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
-
# ifndef _SC_PAGE_SIZE
-
# define _SC_PAGE_SIZE _SC_PAGESIZE
-
# endif
-
# endif
-
-
# ifdef _SC_PAGE_SIZE
-
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-
# else
-
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
-
extern size_t getpagesize();
-
# define malloc_getpagesize getpagesize()
-
# else
-
# ifdef WIN32 /* use supplied emulation of getpagesize */
-
# define malloc_getpagesize getpagesize()
-
# else
-
# ifndef LACKS_SYS_PARAM_H
-
# include <sys/param.h>
-
# endif
-
# ifdef EXEC_PAGESIZE
-
# define malloc_getpagesize EXEC_PAGESIZE
-
# else
-
# ifdef NBPG
-
# ifndef CLSIZE
-
# define malloc_getpagesize NBPG
-
# else
-
# define malloc_getpagesize (NBPG * CLSIZE)
-
# endif
-
# else
-
# ifdef NBPC
-
# define malloc_getpagesize NBPC
-
# else
-
# ifdef PAGESIZE
-
# define malloc_getpagesize PAGESIZE
-
# else /* just guess */
-
# define malloc_getpagesize (4096)
-
# endif
-
# endif
-
# endif
-
# endif
-
# endif
-
# endif
-
# endif
-
#endif
-
-
/*
-
This version of malloc supports the standard SVID/XPG mallinfo
-
routine that returns a struct containing usage properties and
-
statistics. It should work on any SVID/XPG compliant system that has
-
a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
-
install such a thing yourself, cut out the preliminary declarations
-
as described above and below and save them in a malloc.h file. But
-
there's no compelling reason to bother to do this.)
-
-
The main declaration needed is the mallinfo struct that is returned
-
(by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
-
bunch of fields that are not even meaningful in this version of
-
malloc. These fields are are instead filled by mallinfo() with
-
other numbers that might be of interest.
-
-
HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
-
/usr/include/malloc.h file that includes a declaration of struct
-
mallinfo. If so, it is included; else an SVID2/XPG2 compliant
-
version is declared below. These must be precisely the same for
-
mallinfo() to work. The original SVID version of this struct,
-
defined on most systems with mallinfo, declares all fields as
-
ints. But some others define as unsigned long. If your system
-
defines the fields using a type of different width than listed here,
-
you must #include your system version and #define
-
HAVE_USR_INCLUDE_MALLOC_H.
-
*/
-
-
/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-
#ifdef HAVE_USR_INCLUDE_MALLOC_H
-
#include "/usr/include/malloc.h"
-
#endif
-
-
-
/* ---------- description of public routines ------------ */
-
-
/*
-
malloc(size_t n)
-
Returns a pointer to a newly allocated chunk of at least n bytes, or null
-
if no space is available. Additionally, on failure, errno is
-
set to ENOMEM on ANSI C systems.
-
-
If n is zero, malloc returns a minumum-sized chunk. (The minimum
-
size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
-
systems.) On most systems, size_t is an unsigned type, so calls
-
with negative arguments are interpreted as requests for huge amounts
-
of space, which will often fail. The maximum supported value of n
-
differs across systems, but is in all cases less than the maximum
-
representable value of a size_t.
-
*/
-
#if __STD_C
-
Void_t* public_mALLOc(size_t);
-
#else
-
Void_t* public_mALLOc();
-
#endif
-
#ifdef libc_hidden_proto
-
libc_hidden_proto (public_mALLOc)
-
#endif
-
-
/*
-
free(Void_t* p)
-
Releases the chunk of memory pointed to by p, that had been previously
-
allocated using malloc or a related routine such as realloc.
-
It has no effect if p is null. It can have arbitrary (i.e.,
-
effects if p has already been freed.
-
-
Unless disabled (using mallopt), freeing very large spaces will
-
when possible, automatically trigger operations that give
-
back unused memory to the system, thus reducing program footprint.
-
*/
-
#if __STD_C
-
void public_fREe(Void_t*);
-
#else
-
void public_fREe();
-
#endif
-
#ifdef libc_hidden_proto
-
libc_hidden_proto (public_fREe)
-
#endif
-
-
/*
-
calloc(size_t n_elements, size_t element_size);
-
Returns a pointer to n_elements * element_size bytes, with all locations
-
set to zero.
-
*/
-
#if __STD_C
-
Void_t* public_cALLOc(size_t, size_t);
-
#else
-
Void_t* public_cALLOc();
-
#endif
-
-
/*
-
realloc(Void_t* p, size_t n)
-
Returns a pointer to a chunk of size n that contains the same data
-
as does chunk p up to the minimum of (n, p's size) bytes, or null
-
if no space is available.
-
-
The returned pointer may or may not be the same as p. The algorithm
-
prefers extending p when possible, otherwise it employs the
-
equivalent of a malloc-copy-free sequence.
-
-
If p is null, realloc is equivalent to malloc.
-
-
If space is not available, realloc returns null, errno is set (if on
-
ANSI) and p is NOT freed.
-
-
if n is for fewer bytes than already held by p, the newly unused
-
space is lopped off and freed if possible. Unless the #define
-
REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
-
zero (re)allocates a minimum-sized chunk.
-
-
Large chunks that were internally obtained via mmap will always
-
be reallocated using malloc-copy-free sequences unless
-
the system supports MREMAP (currently only linux).
-
-
The old unix realloc convention of allowing the last-free'd chunk
-
to be used as an argument to realloc is not supported.
-
*/
-
#if __STD_C
-
Void_t* public_rEALLOc(Void_t*, size_t);
-
#else
-
Void_t* public_rEALLOc();
-
#endif
-
#ifdef libc_hidden_proto
-
libc_hidden_proto (public_rEALLOc)
-
#endif
-
-
/*
-
memalign(size_t alignment, size_t n);
-
Returns a pointer to a newly allocated chunk of n bytes, aligned
-
in accord with the alignment argument.
-
-
The alignment argument should be a power of two. If the argument is
-
not a power of two, the nearest greater power is used.
-
8-byte alignment is guaranteed by normal malloc calls, so don't
-
bother calling memalign with an argument of 8 or less.
-
-
Overreliance on memalign is a sure way to fragment space.
-
*/
-
#if __STD_C
-
Void_t* public_mEMALIGn(size_t, size_t);
-
#else
-
Void_t* public_mEMALIGn();
-
#endif
-
#ifdef libc_hidden_proto
-
libc_hidden_proto (public_mEMALIGn)
-
#endif
-
-
/*
-
valloc(size_t n);
-
Equivalent to memalign(pagesize, n), where pagesize is the page
-
size of the system. If the pagesize is unknown, 4096 is used.
-
*/
-
#if __STD_C
-
Void_t* public_vALLOc(size_t);
-
#else
-
Void_t* public_vALLOc();
-
#endif
-
-
-
-
/*
-
mallopt(int parameter_number, int parameter_value)
-
Sets tunable parameters The format is to provide a
-
(parameter-number, parameter-value) pair. mallopt then sets the
-
corresponding parameter to the argument value if it can (i.e., so
-
long as the value is meaningful), and returns 1 if successful else
-
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
-
normally defined in malloc.h. Only one of these (M_MXFAST) is used
-
in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
-
so setting them has no effect. But this malloc also supports four
-
other options in mallopt. See below for details. Briefly, supported
-
parameters are as follows (listed defaults are for "typical"
-
configurations).
-
-
Symbol param # default allowed param values
-
M_MXFAST 1 64 0-80 (0 disables fastbins)
-
M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
-
M_TOP_PAD -2 0 any
-
M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
-
M_MMAP_MAX -4 65536 any (0 disables use of mmap)
-
*/
-
#if __STD_C
-
int public_mALLOPt(int, int);
-
#else
-
int public_mALLOPt();
-
#endif
-
-
-
/*
-
mallinfo()
-
Returns (by copy) a struct containing various summary statistics:
-
-
arena: current total non-mmapped bytes allocated from system
-
ordblks: the number of free chunks
-
smblks: the number of fastbin blocks (i.e., small chunks that
-
have been freed but not use resused or consolidated)
-
hblks: current number of mmapped regions
-
hblkhd: total bytes held in mmapped regions
-
usmblks: the maximum total allocated space. This will be greater
-
than current total if trimming has occurred.
-
fsmblks: total bytes held in fastbin blocks
-
uordblks: current total allocated space (normal or mmapped)
-
fordblks: total free space
-
keepcost: the maximum number of bytes that could ideally be released
-
back to system via malloc_trim. ("ideally" means that
-
it ignores page restrictions etc.)
-
-
Because these fields are ints, but internal bookkeeping may
-
be kept as longs, the reported values may wrap around zero and
-
thus be inaccurate.
-
*/
-
#if __STD_C
-
struct mallinfo public_mALLINFo(void);
-
#else
-
struct mallinfo public_mALLINFo();
-
#endif
-
-
#ifndef _LIBC
-
/*
-
independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
-
-
independent_calloc is similar to calloc, but instead of returning a
-
single cleared space, it returns an array of pointers to n_elements
-
independent elements that can hold contents of size elem_size, each
-
of which starts out cleared, and can be independently freed,
-
realloc'ed etc. The elements are guaranteed to be adjacently
-
allocated (this is not guaranteed to occur with multiple callocs or
-
mallocs), which may also improve cache locality in some
-
applications.
-
-
The "chunks" argument is optional (i.e., may be null, which is
-
probably the most typical usage). If it is null, the returned array
-
is itself dynamically allocated and should also be freed when it is
-
no longer needed. Otherwise, the chunks array must be of at least
-
n_elements in length. It is filled in with the pointers to the
-
chunks.
-
-
In either case, independent_calloc returns this pointer array, or
-
null if the allocation failed. If n_elements is zero and "chunks"
-
is null, it returns a chunk representing an array with zero elements
-
(which should be freed if not wanted).
-
-
Each element must be individually freed when it is no longer
-
needed. If you'd like to instead be able to free all at once, you
-
should instead use regular calloc and assign pointers into this
-
space to represent elements. (In this case though, you cannot
-
independently free elements.)
-
-
independent_calloc simplifies and speeds up implementations of many
-
kinds of pools. It may also be useful when constructing large data
-
structures that initially have a fixed number of fixed-sized nodes,
-
but the number is not known at compile time, and some of the nodes
-
may later need to be freed. For example:
-
-
struct Node { int item; struct Node* next; };
-
-
struct Node* build_list() {
-
struct Node** pool;
-
int n = read_number_of_nodes_needed();
-
if (n <= 0) return 0;
-
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
-
if (pool == 0) die();
-
// organize into a linked list...
-
struct Node* first = pool[0];
-
for (i = 0; i < n-1; ++i)
-
pool[i]->next = pool[i+1];
-
free(pool); // Can now free the array (or not, if it is needed later)
-
return first;
-
}
-
*/
-
#if __STD_C
-
Void_t** public_iCALLOc(size_t, size_t, Void_t**);
-
#else
-
Void_t** public_iCALLOc();
-
#endif
-
-
/*
-
independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-
-
independent_comalloc allocates, all at once, a set of n_elements
-
chunks with sizes indicated in the "sizes" array. It returns
-
an array of pointers to these elements, each of which can be
-
independently freed, realloc'ed etc. The elements are guaranteed to
-
be adjacently allocated (this is not guaranteed to occur with
-
multiple callocs or mallocs), which may also improve cache locality
-
in some applications.
-
-
The "chunks" argument is optional (i.e., may be null). If it is null
-
the returned array is itself dynamically allocated and should also
-
be freed when it is no longer needed. Otherwise, the chunks array
-
must be of at least n_elements in length. It is filled in with the
-
pointers to the chunks.
-
-
In either case, independent_comalloc returns this pointer array, or
-
null if the allocation failed. If n_elements is zero and chunks is
-
null, it returns a chunk representing an array with zero elements
-
(which should be freed if not wanted).
-
-
Each element must be individually freed when it is no longer
-
needed. If you'd like to instead be able to free all at once, you
-
should instead use a single regular malloc, and assign pointers at
-
particular offsets in the aggregate space. (In this case though, you
-
cannot independently free elements.)
-
-
independent_comallac differs from independent_calloc in that each
-
element may have a different size, and also that it does not
-
automatically clear elements.
-
-
independent_comalloc can be used to speed up allocation in cases
-
where several structs or objects must always be allocated at the
-
same time. For example:
-
-
struct Head { ... }
-
struct Foot { ... }
-
-
void send_message(char* msg) {
-
int msglen = strlen(msg);
-
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
-
void* chunks[3];
-
if (independent_comalloc(3, sizes, chunks) == 0)
-
die();
-
struct Head* head = (struct Head*)(chunks[0]);
-
char* body = (char*)(chunks[1]);
-
struct Foot* foot = (struct Foot*)(chunks[2]);
-
// ...
-
}
-
-
In general though, independent_comalloc is worth using only for
-
larger values of n_elements. For small values, you probably won't
-
detect enough difference from series of malloc calls to bother.
-
-
Overuse of independent_comalloc can increase overall memory usage,
-
since it cannot reuse existing noncontiguous small chunks that
-
might be available for some of the elements.
-
*/
-
#if __STD_C
-
Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
-
#else
-
Void_t** public_iCOMALLOc();
-
#endif
-
-
#endif /* _LIBC */
-
-
-
/*
-
pvalloc(size_t n);
-
Equivalent to valloc(minimum-page-that-holds(n)), that is,
-
round up n to nearest pagesize.
-
*/
-
#if __STD_C
-
Void_t* public_pVALLOc(size_t);
-
#else
-
Void_t* public_pVALLOc();
-
#endif
-
-
/*
-
cfree(Void_t* p);
-
Equivalent to free(p).
-
-
cfree is needed/defined on some systems that pair it with calloc,
-
for odd historical reasons (such as: cfree is used in example
-
code in the first edition of K&R).
-
*/
-
#if __STD_C
-
void public_cFREe(Void_t*);
-
#else
-
void public_cFREe();
-
#endif
-
-
/*
-
malloc_trim(size_t pad);
-
-
If possible, gives memory back to the system (via negative
-
arguments to sbrk) if there is unused memory at the `high' end of
-
the malloc pool. You can call this after freeing large blocks of
-
memory to potentially reduce the system-level memory requirements
-
of a program. However, it cannot guarantee to reduce memory. Under
-
some allocation patterns, some large free blocks of memory will be
-
locked between two used chunks, so they cannot be given back to
-
the system.
-
-
The `pad' argument to malloc_trim represents the amount of free
-
trailing space to leave untrimmed. If this argument is zero,
-
only the minimum amount of memory to maintain internal data
-
structures will be left (one page or less). Non-zero arguments
-
can be supplied to maintain enough trailing space to service
-
future expected allocations without having to re-obtain memory
-
from the system.
-
-
Malloc_trim returns 1 if it actually released any memory, else 0.
-
On systems that do not support "negative sbrks", it will always
-
return 0.
-
*/
-
#if __STD_C
-
int public_mTRIm(size_t);
-
#else
-
int public_mTRIm();
-
#endif
-
-
/*
-
malloc_usable_size(Void_t* p);
-
-
Returns the number of bytes you can actually use in
-
an allocated chunk, which may be more than you requested (although
-
often not) due to alignment and minimum size constraints.
-
You can use this many bytes without worrying about
-
overwriting other allocated objects. This is not a particularly great
-
programming practice. malloc_usable_size can be more useful in
-
debugging and assertions, for example:
-
-
p = malloc(n);
-
assert(malloc_usable_size(p) >= 256);
-
-
*/
-
#if __STD_C
-
size_t public_mUSABLe(Void_t*);
-
#else
-
size_t public_mUSABLe();
-
#endif
-
-
/*
-
malloc_stats();
-
Prints on stderr the amount of space obtained from the system (both
-
via sbrk and mmap), the maximum amount (which may be more than
-
current if malloc_trim and/or munmap got called), and the current
-
number of bytes allocated via malloc (or realloc, etc) but not yet
-
freed. Note that this is the number of bytes allocated, not the
-
number requested. It will be larger than the number requested
-
because of alignment and bookkeeping overhead. Because it includes
-
alignment wastage as being in use, this figure may be greater than
-
zero even when no user-level chunks are allocated.
-
-
The reported current and maximum system memory can be inaccurate if
-
a program makes other calls to system memory allocation functions
-
(normally sbrk) outside of malloc.
-
-
malloc_stats prints only the most commonly interesting statistics.
-
More information can be obtained by calling mallinfo.
-
-
*/
-
#if __STD_C
-
void public_mSTATs(void);
-
#else
-
void public_mSTATs();
-
#endif
-
-
/*
-
malloc_get_state(void);
-
-
Returns the state of all malloc variables in an opaque data
-
structure.
-
*/
-
#if __STD_C
-
Void_t* public_gET_STATe(void);
-
#else
-
Void_t* public_gET_STATe();
-
#endif
-
-
/*
-
malloc_set_state(Void_t* state);
-
-
Restore the state of all malloc variables from data obtained with
-
malloc_get_state().
-
*/
-
#if __STD_C
-
int public_sET_STATe(Void_t*);
-
#else
-
int public_sET_STATe();
-
#endif
-
-
#ifdef _LIBC
-
/*
-
posix_memalign(void **memptr, size_t alignment, size_t size);
-
-
POSIX wrapper like memalign(), checking for validity of size.
-
*/
-
int __posix_memalign(void **, size_t, size_t);
-
#endif
-
-
/* mallopt tuning options */
-
-
/*
-
M_MXFAST is the maximum request size used for "fastbins", special bins
-
that hold returned chunks without consolidating their spaces. This
-
enables future requests for chunks of the same size to be handled
-
very quickly, but can increase fragmentation, and thus increase the
-
overall memory footprint of a program.
-
-
This malloc manages fastbins very conservatively yet still
-
efficiently, so fragmentation is rarely a problem for values less
-
than or equal to the default. The maximum supported value of MXFAST
-
is 80. You wouldn't want it any higher than this anyway. Fastbins
-
are designed especially for use with many small structs, objects or
-
strings -- the default handles structs/objects/arrays with sizes up
-
to 8 4byte fields, or small strings representing words, tokens,
-
etc. Using fastbins for larger objects normally worsens
-
fragmentation without improving speed.
-
-
M_MXFAST is set in REQUEST size units. It is internally used in
-
chunksize units, which adds padding and alignment. You can reduce
-
M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
-
algorithm to be a closer approximation of fifo-best-fit in all cases,
-
not just for larger requests, but will generally cause it to be
-
slower.
-
*/
-
-
-
/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
-
#ifndef M_MXFAST
-
#define M_MXFAST 1
-
#endif
-
-
#ifndef DEFAULT_MXFAST
-
#define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
-
#endif
-
-
-
/*
-
M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
-
to keep before releasing via malloc_trim in free().
-
-
Automatic trimming is mainly useful in long-lived programs.
-
Because trimming via sbrk can be slow on some systems, and can
-
sometimes be wasteful (in cases where programs immediately
-
afterward allocate more large chunks) the value should be high
-
enough so that your overall system performance would improve by
-
releasing this much memory.
-
-
The trim threshold and the mmap control parameters (see below)
-
can be traded off with one another. Trimming and mmapping are
-
two different ways of releasing unused memory back to the
-
system. Between these two, it is often possible to keep
-
system-level demands of a long-lived program down to a bare
-
minimum. For example, in one test suite of sessions measuring
-
the XF86 X server on Linux, using a trim threshold of 128K and a
-
mmap threshold of 192K led to near-minimal long term resource
-
consumption.
-
-
If you are using this malloc in a long-lived program, it should
-
pay to experiment with these values. As a rough guide, you
-
might set to a value close to the average size of a process
-
(program) running on your system. Releasing this much memory
-
would allow such a process to run in memory. Generally, it's
-
worth it to tune for trimming rather tham memory mapping when a
-
program undergoes phases where several large chunks are
-
allocated and released in ways that can reuse each other's
-
storage, perhaps mixed with phases where there are no such
-
chunks at all. And in well-behaved long-lived programs,
-
controlling release of large blocks via trimming versus mapping
-
is usually faster.
-
-
However, in most programs, these parameters serve mainly as
-
protection against the system-level effects of carrying around
-
massive amounts of unneeded memory. Since frequent calls to
-
sbrk, mmap, and munmap otherwise degrade performance, the default
-
parameters are set to relatively high values that serve only as
-
safeguards.
-
-
The trim value It must be greater than page size to have any useful
-
effect. To disable trimming completely, you can set to
-
(unsigned long)(-1)
-
-
Trim settings interact with fastbin (MXFAST) settings: Unless
-
TRIM_FASTBINS is defined, automatic trimming never takes place upon
-
freeing a chunk with size less than or equal to MXFAST. Trimming is
-
instead delayed until subsequent freeing of larger chunks. However,
-
you can still force an attempted trim by calling malloc_trim.
-
-
Also, trimming is not generally possible in cases where
-
the main arena is obtained via mmap.
-
-
Note that the trick some people use of mallocing a huge space and
-
then freeing it at program startup, in an attempt to reserve system
-
memory, doesn't have the intended effect under automatic trimming,
-
since that memory will immediately be returned to the system.
-
*/
-
-
#define M_TRIM_THRESHOLD -1
-
-
#ifndef DEFAULT_TRIM_THRESHOLD
-
#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
-
#endif
-
-
/*
-
M_TOP_PAD is the amount of extra `padding' space to allocate or
-
retain whenever sbrk is called. It is used in two ways internally:
-
-
* When sbrk is called to extend the top of the arena to satisfy
-
a new malloc request, this much padding is added to the sbrk
-
request.
-
-
* When malloc_trim is called automatically from free(),
-
it is used as the `pad' argument.
-
-
In both cases, the actual amount of padding is rounded
-
so that the end of the arena is always a system page boundary.
-
-
The main reason for using padding is to avoid calling sbrk so
-
often. Having even a small pad greatly reduces the likelihood
-
that nearly every malloc request during program start-up (or
-
after trimming) will invoke sbrk, which needlessly wastes
-
time.
-
-
Automatic rounding-up to page-size units is normally sufficient
-
to avoid measurable overhead, so the default is 0. However, in
-
systems where sbrk is relatively slow, it can pay to increase
-
this value, at the expense of carrying around more memory than
-
the program needs.
-
*/
-
-
#define M_TOP_PAD -2
-
-
#ifndef DEFAULT_TOP_PAD
-
#define DEFAULT_TOP_PAD (0)
-
#endif
-
-
/*
-
MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
-
adjusted MMAP_THRESHOLD.
-
*/
-
-
#ifndef DEFAULT_MMAP_THRESHOLD_MIN
-
#define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
-
#endif
-
-
#ifndef DEFAULT_MMAP_THRESHOLD_MAX
-
/* For 32-bit platforms we cannot increase the maximum mmap
-
threshold much because it is also the minimum value for the
-
maximum heap size and its alignment. Going above 512k (i.e., 1M
-
for new heaps) wastes too much address space. */
-
# if __WORDSIZE == 32
-
# define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
-
# else
-
# define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
-
# endif
-
#endif
-
-
/*
-
M_MMAP_THRESHOLD is the request size threshold for using mmap()
-
to service a request. Requests of at least this size that cannot
-
be allocated using already-existing space will be serviced via mmap.
-
(If enough normal freed space already exists it is used instead.)
-
-
Using mmap segregates relatively large chunks of memory so that
-
they can be individually obtained and released from the host
-
system. A request serviced through mmap is never reused by any
-
other request (at least not directly; the system may just so
-
happen to remap successive requests to the same locations).
-
-
Segregating space in this way has the benefits that:
-
-
1. Mmapped space can ALWAYS be individually released back
-
to the system, which helps keep the system level memory
-
demands of a long-lived program low.
-
2. Mapped memory can never become `locked' between
-
other chunks, as can happen with normally allocated chunks, which
-
means that even trimming via malloc_trim would not release them.
-
3. On some systems with "holes" in address spaces, mmap can obtain
-
memory that sbrk cannot.
-
-
However, it has the disadvantages that:
-
-
1. The space cannot be reclaimed, consolidated, and then
-
used to service later requests, as happens with normal chunks.
-
2. It can lead to more wastage because of mmap page alignment
-
requirements
-
3. It causes malloc performance to be more dependent on host
-
system memory management support routines which may vary in
-
implementation quality and may impose arbitrary
-
limitations. Generally, servicing a request via normal
-
malloc steps is faster than going through a system's mmap.
-
-
The advantages of mmap nearly always outweigh disadvantages for
-
"large" chunks, but the value of "large" varies across systems. The
-
default is an empirically derived value that works well in most
-
systems.
-
-
-
Update in 2006:
-
The above was written in 2001. Since then the world has changed a lot.
-
Memory got bigger. Applications got bigger. The virtual address space
-
layout in 32 bit linux changed.
-
-
In the new situation, brk() and mmap space is shared and there are no
-
artificial limits on brk size imposed by the kernel. What is more,
-
applications have started using transient allocations larger than the
-
128Kb as was imagined in 2001.
-
-
The price for mmap is also high now; each time glibc mmaps from the
-
kernel, the kernel is forced to zero out the memory it gives to the
-
application. Zeroing memory is expensive and eats a lot of cache and
-
memory bandwidth. This has nothing to do with the efficiency of the
-
virtual memory system, by doing mmap the kernel just has no choice but
-
to zero.
-
-
In 2001, the kernel had a maximum size for brk() which was about 800
-
megabytes on 32 bit x86, at that point brk() would hit the first
-
mmaped shared libaries and couldn't expand anymore. With current 2.6
-
kernels, the VA space layout is different and brk() and mmap
-
both can span the entire heap at will.
-
-
Rather than using a static threshold for the brk/mmap tradeoff,
-
we are now using a simple dynamic one. The goal is still to avoid
-
fragmentation. The old goals we kept are
-
1) try to get the long lived large allocations to use mmap()
-
2) really large allocations should always use mmap()
-
and we're adding now:
-
3) transient allocations should use brk() to avoid forcing the kernel
-
having to zero memory over and over again
-
-
The implementation works with a sliding threshold, which is by default
-
limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
-
out at 128Kb as per the 2001 default.
-
-
This allows us to satisfy requirement 1) under the assumption that long
-
lived allocations are made early in the process' lifespan, before it has
-
started doing dynamic allocations of the same size (which will
-
increase the threshold).
-
-
The upperbound on the threshold satisfies requirement 2)
-
-
The threshold goes up in value when the application frees memory that was
-
allocated with the mmap allocator. The idea is that once the application
-
starts freeing memory of a certain size, it's highly probable that this is
-
a size the application uses for transient allocations. This estimator
-
is there to satisfy the new third requirement.
-
-
*/
-
-
#define M_MMAP_THRESHOLD -3
-
-
#ifndef DEFAULT_MMAP_THRESHOLD
-
#define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
-
#endif
-
-
/*
-
M_MMAP_MAX is the maximum number of requests to simultaneously
-
service using mmap. This parameter exists because
-
some systems have a limited number of internal tables for
-
use by mmap, and using more than a few of them may degrade
-
performance.
-
-
The default is set to a value that serves only as a safeguard.
-
Setting to 0 disables use of mmap for servicing large requests. If
-
HAVE_MMAP is not set, the default value is 0, and attempts to set it
-
to non-zero values in mallopt will fail.
-
*/
-
-
#define M_MMAP_MAX -4
-
-
#ifndef DEFAULT_MMAP_MAX
-
#if HAVE_MMAP
-
#define DEFAULT_MMAP_MAX (65536)
-
#else
-
#define DEFAULT_MMAP_MAX (0)
-
#endif
-
#endif
-
-
#ifdef __cplusplus
-
} /* end of extern "C" */
-
#endif
-
-
#include <malloc.h>
-
-
#ifndef BOUNDED_N
-
#define BOUNDED_N(ptr, sz) (ptr)
-
#endif
-
#ifndef RETURN_ADDRESS
-
#define RETURN_ADDRESS(X_) (NULL)
-
#endif
-
-
/* On some platforms we can compile internal, not exported functions better.
-
Let the environment provide a macro and define it to be empty if it
-
is not available. */
-
#ifndef internal_function
-
# define internal_function
-
#endif
-
-
/* Forward declarations. */
-
struct malloc_chunk;
-
typedef struct malloc_chunk* mchunkptr;
-
-
/* Internal routines. */
-
-
#if __STD_C
-
-
static Void_t* _int_malloc(mstate, size_t);
-
#ifdef ATOMIC_FASTBINS
-
static void _int_free(mstate, mchunkptr, int);
-
#else
-
static void _int_free(mstate, mchunkptr);
-
#endif
-
static Void_t* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
-
INTERNAL_SIZE_T);
-
static Void_t* _int_memalign(mstate, size_t, size_t);
-
static Void_t* _int_valloc(mstate, size_t);
-
static Void_t* _int_pvalloc(mstate, size_t);
-
/*static Void_t* cALLOc(size_t, size_t);*/
-
#ifndef _LIBC
-
static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
-
static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
-
#endif
-
static int mTRIm(mstate, size_t);
-
static size_t mUSABLe(Void_t*);
-
static void mSTATs(void);
-
static int mALLOPt(int, int);
-
static struct mallinfo mALLINFo(mstate);
-
static void malloc_printerr(int action, const char *str, void *ptr);
-
-
static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
-
static int internal_function top_check(void);
-
static void internal_function munmap_chunk(mchunkptr p);
-
#if HAVE_MREMAP
-
static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
-
#endif
-
-
static Void_t* malloc_check(size_t sz, const Void_t *caller);
-
static void free_check(Void_t* mem, const Void_t *caller);
-
static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
-
const Void_t *caller);
-
static Void_t* memalign_check(size_t alignment, size_t bytes,
-
const Void_t *caller);
-
#ifndef NO_THREADS
-
# ifdef _LIBC
-
# if USE___THREAD || !defined SHARED
-
/* These routines are never needed in this configuration. */
-
# define NO_STARTER
-
# endif
-
# endif
-
# ifdef NO_STARTER
-
# undef NO_STARTER
-
# else
-
static Void_t* malloc_starter(size_t sz, const Void_t *caller);
-
static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
-
static void free_starter(Void_t* mem, const Void_t *caller);
-
# endif
-
static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
-
static void free_atfork(Void_t* mem, const Void_t *caller);
-
#endif
-
-
#else
-
-
static Void_t* _int_malloc();
-
static void _int_free();
-
static Void_t* _int_realloc();
-
static Void_t* _int_memalign();
-
static Void_t* _int_valloc();
-
static Void_t* _int_pvalloc();
-
/*static Void_t* cALLOc();*/
-
static Void_t** _int_icalloc();
-
static Void_t** _int_icomalloc();
-
static int mTRIm();
-
static size_t mUSABLe();
-
static void mSTATs();
-
static int mALLOPt();
-
static struct mallinfo mALLINFo();
-
-
#endif
-
-
-
-
-
/* ------------- Optional versions of memcopy ---------------- */
-
-
-
#if USE_MEMCPY
-
-
/*
-
Note: memcpy is ONLY invoked with non-overlapping regions,
-
so the (usually slower) memmove is not needed.
-
*/
-
-
#define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
-
#define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
-
-
#else /* !USE_MEMCPY */
-
-
/* Use Duff's device for good zeroing/copying performance. */
-
-
#define MALLOC_ZERO(charp, nbytes) \
-
do { \
-
INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
-
unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
-
long mcn; \
-
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
-
switch (mctmp) { \
-
case 0: for(;;) { *mzp++ = 0; \
-
case 7: *mzp++ = 0; \
-
case 6: *mzp++ = 0; \
-
case 5: *mzp++ = 0; \
-
case 4: *mzp++ = 0; \
-
case 3: *mzp++ = 0; \
-
case 2: *mzp++ = 0; \
-
case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
-
} \
-
} while(0)
-
-
#define MALLOC_COPY(dest,src,nbytes) \
-
do { \
-
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
-
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
-
unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
-
long mcn; \
-
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
-
switch (mctmp) { \
-
case 0: for(;;) { *mcdst++ = *mcsrc++; \
-
case 7: *mcdst++ = *mcsrc++; \
-
case 6: *mcdst++ = *mcsrc++; \
-
case 5: *mcdst++ = *mcsrc++; \
-
case 4: *mcdst++ = *mcsrc++; \
-
case 3: *mcdst++ = *mcsrc++; \
-
case 2: *mcdst++ = *mcsrc++; \
-
case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
-
} \
-
} while(0)
-
-
#endif
-
-
/* ------------------ MMAP support ------------------ */
-
-
-
#if HAVE_MMAP
-
-
#include <fcntl.h>
-
#ifndef LACKS_SYS_MMAN_H
-
#include <sys/mman.h>
-
#endif
-
-
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-
# define MAP_ANONYMOUS MAP_ANON
-
#endif
-
#if !defined(MAP_FAILED)
-
# define MAP_FAILED ((char*)-1)
-
#endif
-
-
#ifndef MAP_NORESERVE
-
# ifdef MAP_AUTORESRV
-
# define MAP_NORESERVE MAP_AUTORESRV
-
# else
-
# define MAP_NORESERVE 0
-
# endif
-
#endif
-
-
/*
-
Nearly all versions of mmap support MAP_ANONYMOUS,
-
so the following is unlikely to be needed, but is
-
supplied just in case.
-
*/
-
-
#ifndef MAP_ANONYMOUS
-
-
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-
-
#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
-
(dev_zero_fd = open("/dev/zero", O_RDWR), \
-
mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
-
mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
-
-
#else
-
-
#define MMAP(addr, size, prot, flags) \
-
(mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
-
-
#endif
-
-
-
#endif /* HAVE_MMAP */
-
-
-
/*
-
----------------------- Chunk representations -----------------------
-
*/
-
-
-
/*
-
This struct declaration is misleading (but accurate and necessary).
-
It declares a "view" into memory allowing access to necessary
-
fields at known offsets from a given base. See explanation below.
-
*/
-
-
struct malloc_chunk {
-
-
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
-
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
-
-
struct malloc_chunk* fd; /* double links -- used only if free. */
-
struct malloc_chunk* bk;
-
-
/* Only used for large blocks: pointer to next larger size. */
-
struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
-
struct malloc_chunk* bk_nextsize;
-
};
-
-
-
/*
-
malloc_chunk details:
-
-
(The following includes lightly edited explanations by Colin Plumb.)
-
-
Chunks of memory are maintained using a `boundary tag' method as
-
described in e.g., Knuth or Standish. (See the paper by Paul
-
Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
-
survey of such techniques.) Sizes of free chunks are stored both
-
in the front of each chunk and at the end. This makes
-
consolidating fragmented chunks into bigger chunks very fast. The
-
size fields also hold bits representing whether chunks are free or
-
in use.
-
-
An allocated chunk looks like this:
-
-
-
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Size of previous chunk, if allocated | |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Size of chunk, in bytes |M|P|
-
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| User data starts here... .
-
. .
-
. (malloc_usable_size() bytes) .
-
. |
-
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Size of chunk |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
-
Where "chunk" is the front of the chunk for the purpose of most of
-
the malloc code, but "mem" is the pointer that is returned to the
-
user. "Nextchunk" is the beginning of the next contiguous chunk.
-
-
Chunks always begin on even word boundries, so the mem portion
-
(which is returned to the user) is also on an even word boundary, and
-
thus at least double-word aligned.
-
-
Free chunks are stored in circular doubly-linked lists, and look like this:
-
-
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Size of previous chunk |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
`head:' | Size of chunk, in bytes |P|
-
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Forward pointer to next chunk in list |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Back pointer to previous chunk in list |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
| Unused space (may be 0 bytes long) .
-
. .
-
. |
-
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
`foot:' | Size of chunk, in bytes |
-
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
The P (PREV_INUSE) bit, stored in the unused low-order bit of the
-
chunk size (which is always a multiple of two words), is an in-use
-
bit for the *previous* chunk. If that bit is *clear*, then the
-
word before the current chunk size contains the previous chunk
-
size, and can be used to find the front of the previous chunk.
-
The very first chunk allocated always has this bit set,
-
preventing access to non-existent (or non-owned) memory. If
-
prev_inuse is set for any given chunk, then you CANNOT determine
-
the size of the previous chunk, and might even get a memory
-
addressing fault when trying to do so.
-
-
Note that the `foot' of the current chunk is actually represented
-
as the prev_size of the NEXT chunk. This makes it easier to
-
deal with alignments etc but can be very confusing when trying
-
to extend or adapt this code.
-
-
The two exceptions to all this are
-
-
1. The special chunk `top' doesn't bother using the
-
trailing size field since there is no next contiguous chunk
-
that would have to index off it. After initialization, `top'
-
is forced to always exist. If it would become less than
-
MINSIZE bytes long, it is replenished.
-
-
2. Chunks allocated via mmap, which have the second-lowest-order
-
bit M (IS_MMAPPED) set in their size fields. Because they are
-
allocated one-by-one, each must contain its own trailing size field.
-
-
*/
-
-
/*
-
---------- Size and alignment checks and conversions ----------
-
*/
-
-
/* conversion from malloc headers to user pointers, and back */
-
-
#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
-
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
-
-
/* The smallest possible chunk */
-
#define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
-
-
/* The smallest size we can malloc is an aligned minimal chunk */
-
-
#define MINSIZE \
-
(unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
-
-
/* Check if m has acceptable alignment */
-
-
#define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
-
-
#define misaligned_chunk(p) \
-
((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
-
& MALLOC_ALIGN_MASK)
-
-
-
/*
-
Check if a request is so large that it would wrap around zero when
-
padded and aligned. To simplify some other code, the bound is made
-
low enough so that adding MINSIZE will also not wrap around zero.
-
*/
-
-
#define REQUEST_OUT_OF_RANGE(req) \
-
((unsigned long)(req) >= \
-
(unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
-
-
/* pad request bytes into a usable size -- internal version */
-
-
#define request2size(req) \
-
(((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
-
MINSIZE : \
-
((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
-
-
/* Same, except also perform argument check */
-
-
#define checked_request2size(req, sz) \
-
if (REQUEST_OUT_OF_RANGE(req)) { \
-
MALLOC_FAILURE_ACTION; \
-
return 0; \
-
} \
-
(sz) = request2size(req);
-
-
/*
-
--------------- Physical chunk operations ---------------
-
*/
-
-
-
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
-
#define PREV_INUSE 0x1
-
-
/* extract inuse bit of previous chunk */
-
#define prev_inuse(p) ((p)->size & PREV_INUSE)
-
-
-
/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
-
#define IS_MMAPPED 0x2
-
-
/* check for mmap()'ed chunk */
-
#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
-
-
-
/* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
-
from a non-main arena. This is only set immediately before handing
-
the chunk to the user, if necessary. */
-
#define NON_MAIN_ARENA 0x4
-
-
/* check for chunk from non-main arena */
-
#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
-
-
-
/*
-
Bits to mask off when extracting size
-
-
Note: IS_MMAPPED is intentionally not masked off from size field in
-
macros for which mmapped chunks should never be seen. This should
-
cause helpful core dumps to occur if it is tried by accident by
-
people extending or adapting this malloc.
-
*/
-
#define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
-
-
/* Get size, ignoring use bits */
-
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
-
-
-
/* Ptr to next physical malloc_chunk. */
-
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
-
-
/* Ptr to previous physical malloc_chunk */
-
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
-
-
/* Treat space at ptr + offset as a chunk */
-
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
-
-
/* extract p's inuse bit */
-
#define inuse(p)\
-
((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
-
-
/* set/clear chunk as being inuse without otherwise disturbing */
-
#define set_inuse(p)\
-
((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
-
-
#define clear_inuse(p)\
-
((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
-
-
-
/* check/set/clear inuse bits in known places */
-
#define inuse_bit_at_offset(p, s)\
-
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
-
-
#define set_inuse_bit_at_offset(p, s)\
-
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
-
-
#define clear_inuse_bit_at_offset(p, s)\
-
(((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
-
-
-
/* Set size at head, without disturbing its use bit */
-
#define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
-
-
/* Set size/use field */
-
#define set_head(p, s) ((p)->size = (s))
-
-
/* Set size at footer (only when chunk is not in use) */
-
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
-
-
-
/*
-
-------------------- Internal data structures --------------------
-
-
All internal state is held in an instance of malloc_state defined
-
below. There are no other static variables, except in two optional
-
cases:
-
* If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
-
* If HAVE_MMAP is true, but mmap doesn't support
-
MAP_ANONYMOUS, a dummy file descriptor for mmap.
-
-
Beware of lots of tricks that minimize the total bookkeeping space
-
requirements. The result is a little over 1K bytes (for 4byte
-
pointers and size_t.)
-
*/
-
-
/*
-
Bins
-
-
An array of bin headers for free chunks. Each bin is doubly
-
linked. The bins are approximately proportionally (log) spaced.
-
There are a lot of these bins (128). This may look excessive, but
-
works very well in practice. Most bins hold sizes that are
-
unusual as malloc request sizes, but are more usual for fragments
-
and consolidated sets of chunks, which is what these bins hold, so
-
they can be found quickly. All procedures maintain the invariant
-
that no consolidated chunk physically borders another one, so each
-
chunk in a list is known to be preceeded and followed by either
-
inuse chunks or the ends of memory.
-
-
Chunks in bins are kept in size order, with ties going to the
-
approximately least recently used chunk. Ordering isn't needed
-
for the small bins, which all contain the same-sized chunks, but
-
facilitates best-fit allocation for larger chunks. These lists
-
are just sequential. Keeping them in order almost never requires
-
enough traversal to warrant using fancier ordered data
-
structures.
-
-
Chunks of the same size are linked with the most
-
recently freed at the front, and allocations are taken from the
-
back. This results in LRU (FIFO) allocation order, which tends
-
to give each chunk an equal opportunity to be consolidated with
-
adjacent freed chunks, resulting in larger free chunks and less
-
fragmentation.
-
-
To simplify use in double-linked lists, each bin header acts
-
as a malloc_chunk. This avoids special-casing for headers.
-
But to conserve space and improve locality, we allocate
-
only the fd/bk pointers of bins, and then use repositioning tricks
-
to treat these as the fields of a malloc_chunk*.
-
*/
-
-
typedef struct malloc_chunk* mbinptr;
-
-
/* addressing -- note that bin_at(0) does not exist */
-
#define bin_at(m, i) \
-
(mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
-
- offsetof (struct malloc_chunk, fd))
-
-
/* analog of ++bin */
-
#define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
-
-
/* Reminders about list directionality within bins */
-
#define first(b) ((b)->fd)
-
#define last(b) ((b)->bk)
-
-
/* Take a chunk off a bin list */
-
#define unlink(P, BK, FD) { \
-
FD = P->fd; \
-
BK = P->bk; \
-
if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
-
malloc_printerr (check_action, "corrupted double-linked list", P); \
-
else { \
-
FD->bk = BK; \
-
BK->fd = FD; \
-
if (!in_smallbin_range (P->size) \
-
&& __builtin_expect (P->fd_nextsize != NULL, 0)) { \
-
assert (P->fd_nextsize->bk_nextsize == P); \
-
assert (P->bk_nextsize->fd_nextsize == P); \
-
if (FD->fd_nextsize == NULL) { \
-
if (P->fd_nextsize == P) \
-
FD->fd_nextsize = FD->bk_nextsize = FD; \
-
else { \
-
FD->fd_nextsize = P->fd_nextsize; \
-
FD->bk_nextsize = P->bk_nextsize; \
-
P->fd_nextsize->bk_nextsize = FD; \
-
P->bk_nextsize->fd_nextsize = FD; \
-
} \
-
} else { \
-
P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
-
P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
-
} \
-
} \
-
} \
-
}
-
-
/*
-
Indexing
-
-
Bins for sizes < 512 bytes contain chunks of all the same size, spaced
-
8 bytes apart. Larger bins are approximately logarithmically spaced:
-
-
64 bins of size 8
-
32 bins of size 64
-
16 bins of size 512
-
8 bins of size 4096
-
4 bins of size 32768
-
2 bins of size 262144
-
1 bin of size what's left
-
-
There is actually a little bit of slop in the numbers in bin_index
-
for the sake of speed. This makes no difference elsewhere.
-
-
The bins top out around 1MB because we expect to service large
-
requests via mmap.
-
*/
-
-
#define NBINS 128
-
#define NSMALLBINS 64
-
#define SMALLBIN_WIDTH MALLOC_ALIGNMENT
-
#define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
-
-
#define in_smallbin_range(sz) \
-
((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
-
-
#define smallbin_index(sz) \
-
(SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3))
-
-
#define largebin_index_32(sz) \
-
(((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
-
((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
-
((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
-
((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
-
((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
-
126)
-
-
// XXX It remains to be seen whether it is good to keep the widths of
-
// XXX the buckets the same or whether it should be scaled by a factor
-
// XXX of two as well.
-
#define largebin_index_64(sz) \
-
(((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
-
((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
-
((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
-
((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
-
((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
-
126)
-
-
#define largebin_index(sz) \
-
(SIZE_SZ == 8 ? largebin_index_64 (sz) : largebin_index_32 (sz))
-
-
#define bin_index(sz) \
-
((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
-
-
-
/*
-
Unsorted chunks
-
-
All remainders from chunk splits, as well as all returned chunks,
-
are first placed in the "unsorted" bin. They are then placed
-
in regular bins after malloc gives them ONE chance to be used before
-
binning. So, basically, the unsorted_chunks list acts as a queue,
-
with chunks being placed on it in free (and malloc_consolidate),
-
and taken off (to be either used or placed in bins) in malloc.
-
-
The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
-
does not have to be taken into account in size comparisons.
-
*/
-
-
/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
-
#define unsorted_chunks(M) (bin_at(M, 1))
-
-
/*
-
Top
-
-
The top-most available chunk (i.e., the one bordering the end of
-
available memory) is treated specially. It is never included in
-
any bin, is used only if no other chunk is available, and is
-
released back to the system if it is very large (see
-
M_TRIM_THRESHOLD). Because top initially
-
points to its own bin with initial zero size, thus forcing
-
extension on the first malloc request, we avoid having any special
-
code in malloc to check whether it even exists yet. But we still
-
need to do so when getting memory from system, so we make
-
initial_top treat the bin as a legal but unusable chunk during the
-
interval between initialization and the first call to
-
sYSMALLOc. (This is somewhat delicate, since it relies on
-
the 2 preceding words to be zero during this interval as well.)
-
*/
-
-
/* Conveniently, the unsorted bin can be used as dummy top on first call */
-
#define initial_top(M) (unsorted_chunks(M))
-
-
/*
-
Binmap
-
-
To help compensate for the large number of bins, a one-level index
-
structure is used for bin-by-bin searching. `binmap' is a
-
bitvector recording whether bins are definitely empty so they can
-
be skipped over during during traversals. The bits are NOT always
-
cleared as soon as bins are empty, but instead only
-
when they are noticed to be empty during traversal in malloc.
-
*/
-
-
/* Conservatively use 32 bits per map word, even if on 64bit system */
-
#define BINMAPSHIFT 5
-
#define BITSPERMAP (1U << BINMAPSHIFT)
-
#define BINMAPSIZE (NBINS / BITSPERMAP)
-
-
#define idx2block(i) ((i) >> BINMAPSHIFT)
-
#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
-
-
#define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
-
#define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
-
#define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
-
-
/*
-
Fastbins
-
-
An array of lists holding recently freed small chunks. Fastbins
-
are not doubly linked. It is faster to single-link them, and
-
since chunks are never removed from the middles of these lists,
-
double linking is not necessary. Also, unlike regular bins, they
-
are not even processed in FIFO order (they use faster LIFO) since
-
ordering doesn't much matter in the transient contexts in which
-
fastbins are normally used.
-
-
Chunks in fastbins keep their inuse bit set, so they cannot
-
be consolidated with other free chunks. malloc_consolidate
-
releases all chunks in fastbins and consolidates them with
-
other free chunks.
-
*/
-
-
typedef struct malloc_chunk* mfastbinptr;
-
#define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
-
-
/* offset 2 to use otherwise unindexable first 2 bins */
-
#define fastbin_index(sz) \
-
((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
-
-
-
/* The maximum fastbin request size we support */
-
#define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
-
-
#define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
-
-
/*
-
FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
-
that triggers automatic consolidation of possibly-surrounding
-
fastbin chunks. This is a heuristic, so the exact value should not
-
matter too much. It is defined at half the default trim threshold as a
-
compromise heuristic to only attempt consolidation if it is likely
-
to lead to trimming. However, it is not dynamically tunable, since
-
consolidation reduces fragmentation surrounding large chunks even
-
if trimming is not used.
-
*/
-
-
#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
-
-
/*
-
Since the lowest 2 bits in max_fast don't matter in size comparisons,
-
they are used as flags.
-
*/
-
-
/*
-
FASTCHUNKS_BIT held in max_fast indicates that there are probably
-
some fastbin chunks. It is set true on entering a chunk into any
-
fastbin, and cleared only in malloc_consolidate.
-
-
The truth value is inverted so that have_fastchunks will be true
-
upon startup (since statics are zero-filled), simplifying
-
initialization checks.
-
*/
-
-
#define FASTCHUNKS_BIT (1U)
-
-
#define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
-
#ifdef ATOMIC_FASTBINS
-
#define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
-
#define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
-
#else
-
#define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
-
#define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
-
#endif
-
-
/*
-
NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
-
regions. Otherwise, contiguity is exploited in merging together,
-
when possible, results from consecutive MORECORE calls.
-
-
The initial value comes from MORECORE_CONTIGUOUS, but is
-
changed dynamically if mmap is ever used as an sbrk substitute.
-
*/
-
-
#define NONCONTIGUOUS_BIT (2U)
-
-
#define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
-
#define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
-
#define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
-
#define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
-
-
/*
-
Set value of max_fast.
-
Use impossibly small value if 0.
-
Precondition: there are no existing fastbin chunks.
-
Setting the value clears fastchunk bit but preserves noncontiguous bit.
-
*/
-
-
#define set_max_fast(s) \
-
global_max_fast = (((s) == 0) \
-
? SMALLBIN_WIDTH: ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
-
#define get_max_fast() global_max_fast
-
-
-
/*
-
----------- Internal state representation and initialization -----------
-
*/
-
-
struct malloc_state {
-
/* Serialize access. */
-
mutex_t mutex;
-
-
/* Flags (formerly in max_fast). */
-
int flags;
-
-
#if THREAD_STATS
-
/* Statistics for locking. Only used if THREAD_STATS is defined. */
-
long stat_lock_direct, stat_lock_loop, stat_lock_wait;
-
#endif
-
-
/* Fastbins */
-
mfastbinptr fastbinsY[NFASTBINS];
-
-
/* Base of the topmost chunk -- not otherwise kept in a bin */
-
mchunkptr top;
-
-
/* The remainder from the most recent split of a small request */
-
mchunkptr last_remainder;
-
-
/* Normal bins packed as described above */
-
mchunkptr bins[NBINS * 2 - 2];
-
-
/* Bitmap of bins */
-
unsigned int binmap[BINMAPSIZE];
-
-
/* Linked list */
-
struct malloc_state *next;
-
-
#ifdef PER_THREAD
-
/* Linked list for free arenas. */
-
struct malloc_state *next_free;
-
#endif
-
-
/* Memory allocated from the system in this arena. */
-
INTERNAL_SIZE_T system_mem;
-
INTERNAL_SIZE_T max_system_mem;
-
};
-
-
struct malloc_par {
-
/* Tunable parameters */
-
unsigned long trim_threshold;
-
INTERNAL_SIZE_T top_pad;
-
INTERNAL_SIZE_T mmap_threshold;
-
#ifdef PER_THREAD
-
INTERNAL_SIZE_T arena_test;
-
INTERNAL_SIZE_T arena_max;
-
#endif
-
-
/* Memory map support */
-
int n_mmaps;
-
int n_mmaps_max;
-
int max_n_mmaps;
-
/* the mmap_threshold is dynamic, until the user sets
-
it manually, at which point we need to disable any
-
dynamic behavior. */
-
int no_dyn_threshold;
-
-
/* Cache malloc_getpagesize */
-
unsigned int pagesize;
-
-
/* Statistics */
-
INTERNAL_SIZE_T mmapped_mem;
-
/*INTERNAL_SIZE_T sbrked_mem;*/
-
/*INTERNAL_SIZE_T max_sbrked_mem;*/
-
INTERNAL_SIZE_T max_mmapped_mem;
-
INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
-
-
/* First address handed out by MORECORE/sbrk. */
-
char* sbrk_base;
-
};
-
-
/* There are several instances of this struct ("arenas") in this
-
malloc. If you are adapting this malloc in a way that does NOT use
-
a static or mmapped malloc_state, you MUST explicitly zero-fill it
-
before using. This malloc relies on the property that malloc_state
-
is initialized to all zeroes (as is true of C statics). */
-
-
static struct malloc_state main_arena;
-
-
/* There is only one instance of the malloc parameters. */
-
-
static struct malloc_par mp_;
-
-
-
#ifdef PER_THREAD
-
/* Non public mallopt parameters. */
-
#define M_ARENA_TEST -7
-
#define M_ARENA_MAX -8
-
#endif
-
-
-
/* Maximum size of memory handled in fastbins. */
-
static INTERNAL_SIZE_T global_max_fast;
-
-
/*
-
Initialize a malloc_state struct.
-
-
This is called only from within malloc_consolidate, which needs
-
be called in the same contexts anyway. It is never called directly
-
outside of malloc_consolidate because some optimizing compilers try
-
to inline it at all call points, which turns out not to be an
-
optimization at all. (Inlining it in malloc_consolidate is fine though.)
-
*/
-
-
#if __STD_C
-
static void malloc_init_state(mstate av)
-
#else
-
static void malloc_init_state(av) mstate av;
-
#endif
-
{
-
int i;
-
mbinptr bin;
-
-
/* Establish circular links for normal bins */
-
for (i = 1; i < NBINS; ++i) {
-
bin = bin_at(av,i);
-
bin->fd = bin->bk = bin;
-
}
-
-
#if MORECORE_CONTIGUOUS
-
if (av != &main_arena)
-
#endif
-
set_noncontiguous(av);
-
if (av == &main_arena)
-
set_max_fast(DEFAULT_MXFAST);
-
av->flags |= FASTCHUNKS_BIT;
-
-
av->top = initial_top(av);
-
}
-
-
/*
-
Other internal utilities operating on mstates
-
*/
-
-
#if __STD_C
-
static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
-
static int sYSTRIm(size_t, mstate);
-
static void malloc_consolidate(mstate);
-
#ifndef _LIBC
-
static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
-
#endif
-
#else
-
static Void_t* sYSMALLOc();
-
static int sYSTRIm();
-
static void malloc_consolidate();
-
static Void_t** iALLOc();
-
#endif
-
-
-
/* -------------- Early definitions for debugging hooks ---------------- */
-
-
/* Define and initialize the hook variables. These weak definitions must
-
appear before any use of the variables in a function (arena.c uses one). */
-
#ifndef weak_variable
-
#ifndef _LIBC
-
#define weak_variable /**/
-
#else
-
/* In GNU libc we want the hook variables to be weak definitions to
-
avoid a problem with Emacs. */
-
#define weak_variable weak_function
-
#endif
-
#endif
-
-
/* Forward declarations. */
-
static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
-
const __malloc_ptr_t caller));
-
static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
-
const __malloc_ptr_t caller));
-
static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
-
const __malloc_ptr_t caller));
-
-
void weak_variable (*__malloc_initialize_hook) (void) = NULL;
-
void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
-
const __malloc_ptr_t) = NULL;
-
__malloc_ptr_t weak_variable (*__malloc_hook)
-
(size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
-
__malloc_ptr_t weak_variable (*__realloc_hook)
-
(__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
-
= realloc_hook_ini;
-
__malloc_ptr_t weak_variable (*__memalign_hook)
-
(size_t __alignment, size_t __size, const __malloc_ptr_t)
-
= memalign_hook_ini;
-
void weak_variable (*__after_morecore_hook) (void) = NULL;
-
-
-
/* ---------------- Error behavior ------------------------------------ */
-
-
#ifndef DEFAULT_CHECK_ACTION
-
#define DEFAULT_CHECK_ACTION 3
-
#endif
-
-
static int check_action = DEFAULT_CHECK_ACTION;
-
-
-
/* ------------------ Testing support ----------------------------------*/
-
-
static int perturb_byte;
-
-
#define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
-
#define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
-
-
-
/* ------------------- Support for multiple arenas -------------------- */
-
#include "arena.c"
-
-
/*
-
Debugging support
-
-
These routines make a number of assertions about the states
-
of data structures that should be true at all times. If any
-
are not true, it's very likely that a user program has somehow
-
trashed memory. (It's also possible that there is a coding error
-
in malloc. In which case, please report
-
*/
-
-
#if ! MALLOC_DEBUG
-
-
#define check_chunk(A,P)
-
#define check_free_chunk(A,P)
-
#define check_inuse_chunk(A,P)
-
#define check_remalloced_chunk(A,P,N)
-
#define check_malloced_chunk(A,P,N)
-
#define check_malloc_state(A)
-
-
#else
-
-
#define check_chunk(A,P) do_check_chunk(A,P)
-
#define check_free_chunk(A,P) do_check_free_chunk(A,P)
-
#define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
-
#define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
-
#define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
-
#define check_malloc_state(A) do_check_malloc_state(A)
-
-
/*
-
Properties of all chunks
-
*/
-
-
#if __STD_C
-
static void do_check_chunk(mstate av, mchunkptr p)
-
#else
-
static void do_check_chunk(av, p) mstate av; mchunkptr p;
-
#endif
-
{
-
unsigned long sz = chunksize(p);
-
/* min and max possible addresses assuming contiguous allocation */
-
char* max_address = (char*)(av->top) + chunksize(av->top);
-
char* min_address = max_address - av->system_mem;
-
-
if (!chunk_is_mmapped(p)) {
-
-
/* Has legal address ... */
-
if (p != av->top) {
-
if (contiguous(av)) {
-
assert(((char*)p) >= min_address);
-
assert(((char*)p + sz) <= ((char*)(av->top)));
-
}
-
}
-
else {
-
/* top size is always at least MINSIZE */
-
assert((unsigned long)(sz) >= MINSIZE);
-
/* top predecessor always marked inuse */
-
assert(prev_inuse(p));
-
}
-
-
}
-
else {
-
#if HAVE_MMAP
-
/* address is outside main heap */
-
if (contiguous(av) && av->top != initial_top(av)) {
-
assert(((char*)p) < min_address || ((char*)p) >= max_address);
-
}
-
/* chunk is page-aligned */
-
assert(((p->prev_size + sz) & (mp_.pagesize-1)) == 0);
-
/* mem is aligned */
-
assert(aligned_OK(chunk2mem(p)));
-
#else
-
/* force an appropriate assert violation if debug set */
-
assert(!chunk_is_mmapped(p));
-
#endif
-
}
-
}
-
-
/*
-
Properties of free chunks
-
*/
-
-
#if __STD_C
-
static void do_check_free_chunk(mstate av, mchunkptr p)
-
#else
-
static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
-
#endif
-
{
-
INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
-
mchunkptr next = chunk_at_offset(p, sz);
-
-
do_check_chunk(av, p);
-
-
/* Chunk must claim to be free ... */
-
assert(!inuse(p));
-
assert (!chunk_is_mmapped(p));
-
-
/* Unless a special marker, must have OK fields */
-
if ((unsigned long)(sz) >= MINSIZE)
-
{
-
assert((sz & MALLOC_ALIGN_MASK) == 0);
-
assert(aligned_OK(chunk2mem(p)));
-
/* ... matching footer field */
-
assert(next->prev_size == sz);
-
/* ... and is fully consolidated */
-
assert(prev_inuse(p));
-
assert (next == av->top || inuse(next));
-
-
/* ... and has minimally sane links */
-
assert(p->fd->bk == p);
-
assert(p->bk->fd == p);
-
}
-
else /* markers are always of size SIZE_SZ */
-
assert(sz == SIZE_SZ);
-
}
-
-
/*
-
Properties of inuse chunks
-
*/
-
-
#if __STD_C
-
static void do_check_inuse_chunk(mstate av, mchunkptr p)
-
#else
-
static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
-
#endif
-
{
-
mchunkptr next;
-
-
do_check_chunk(av, p);
-
-
if (chunk_is_mmapped(p))
-
return; /* mmapped chunks have no next/prev */
-
-
/* Check whether it claims to be in use ... */
-
assert(inuse(p));
-
-
next = next_chunk(p);
-
-
/* ... and is surrounded by OK chunks.
-
Since more things can be checked with free chunks than inuse ones,
-
if an inuse chunk borders them and debug is on, it's worth doing them.
-
*/
-
if (!prev_inuse(p)) {
-
/* Note that we cannot even look at prev unless it is not inuse */
-
mchunkptr prv = prev_chunk(p);
-
assert(next_chunk(prv) == p);
-
do_check_free_chunk(av, prv);
-
}
-
-
if (next == av->top) {
-
assert(prev_inuse(next));
-
assert(chunksize(next) >= MINSIZE);
-
}
-
else if (!inuse(next))
-
do_check_free_chunk(av, next);
-
}
-
-
/*
-
Properties of chunks recycled from fastbins
-
*/
-
-
#if __STD_C
-
static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
-
#else
-
static void do_check_remalloced_chunk(av, p, s)
-
mstate av; mchunkptr p; INTERNAL_SIZE_T s;
-
#endif
-
{
-
INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
-
-
if (!chunk_is_mmapped(p)) {
-
assert(av == arena_for_chunk(p));
-
if (chunk_non_main_arena(p))
-
assert(av != &main_arena);
-
else
-
assert(av == &main_arena);
-
}
-
-
do_check_inuse_chunk(av, p);
-
-
/* Legal size ... */
-
assert((sz & MALLOC_ALIGN_MASK) == 0);
-
assert((unsigned long)(sz) >= MINSIZE);
-
/* ... and alignment */
-
assert(aligned_OK(chunk2mem(p)));
-
/* chunk is less than MINSIZE more than request */
-
assert((long)(sz) - (long)(s) >= 0);
-
assert((long)(sz) - (long)(s + MINSIZE) < 0);
-
}
-
-
/*
-
Properties of nonrecycled chunks at the point they are malloced
-
*/
-
-
#if __STD_C
-
static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
-
#else
-
static void do_check_malloced_chunk(av, p, s)
-
mstate av; mchunkptr p; INTERNAL_SIZE_T s;
-
#endif
-
{
-
/* same as recycled case ... */
-
do_check_remalloced_chunk(av, p, s);
-
-
/*
-
... plus, must obey implementation invariant that prev_inuse is
-
always true of any allocated chunk; i.e., that each allocated
-
chunk borders either a previously allocated and still in-use
-
chunk, or the base of its memory arena. This is ensured
-
by making all allocations from the `lowest' part of any found
-
chunk. This does not necessarily hold however for chunks
-
recycled via fastbins.
-
*/
-
-
assert(prev_inuse(p));
-
}
-
-
-
/*
-
Properties of malloc_state.
-
-
This may be useful for debugging malloc, as well as detecting user
-
programmer errors that somehow write into malloc_state.
-
-
If you are extending or experimenting with this malloc, you can
-
probably figure out how to hack this routine to print out or
-
display chunk addresses, sizes, bins, and other instrumentation.
-
*/
-
-
static void do_check_malloc_state(mstate av)
-
{
-
int i;
-
mchunkptr p;
-
mchunkptr q;
-
mbinptr b;
-
unsigned int idx;
-
INTERNAL_SIZE_T size;
-
unsigned long total = 0;
-
int max_fast_bin;
-
-
/* internal size_t must be no wider than pointer type */
-
assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
-
-
/* alignment is a power of 2 */
-
assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
-
-
/* cannot run remaining checks until fully initialized */
-
if (av->top == 0 || av->top == initial_top(av))
-
return;
-
-
/* pagesize is a power of 2 */
-
assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
-
-
/* A contiguous main_arena is consistent with sbrk_base. */
-
if (av == &main_arena && contiguous(av))
-
assert((char*)mp_.sbrk_base + av->system_mem ==
-
(char*)av->top + chunksize(av->top));
-
-
/* properties of fastbins */
-
-
/* max_fast is in allowed range */
-
assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
-
-
max_fast_bin = fastbin_index(get_max_fast ());
-
-
for (i = 0; i < NFASTBINS; ++i) {
-
p = fastbin (av, i);
-
-
/* The following test can only be performed for the main arena.
-
While mallopt calls malloc_consolidate to get rid of all fast
-
bins (especially those larger than the new maximum) this does
-
only happen for the main arena. Trying to do this for any
-
other arena would mean those arenas have to be locked and
-
malloc_consolidate be called for them. This is excessive. And
-
even if this is acceptable to somebody it still cannot solve
-
the problem completely since if the arena is locked a
-
concurrent malloc call might create a new arena which then
-
could use the newly invalid fast bins. */
-
-
/* all bins past max_fast are empty */
-
if (av == &main_arena && i > max_fast_bin)
-
assert(p == 0);
-
-
while (p != 0) {
-
/* each chunk claims to be inuse */
-
do_check_inuse_chunk(av, p);
-
total += chunksize(p);
-
/* chunk belongs in this bin */
-
assert(fastbin_index(chunksize(p)) == i);
-
p = p->fd;
-
}
-
}
-
-
if (total != 0)
-
assert(have_fastchunks(av));
-
else if (!have_fastchunks(av))
-
assert(total == 0);
-
-
/* check normal bins */
-
for (i = 1; i < NBINS; ++i) {
-
b = bin_at(av,i);
-
-
/* binmap is accurate (except for bin 1 == unsorted_chunks) */
-
if (i >= 2) {
-
unsigned int binbit = get_binmap(av,i);
-
int empty = last(b) == b;
-
if (!binbit)
-
assert(empty);
-
else if (!empty)
-
assert(binbit);
-
}
-
-
for (p = last(b); p != b; p = p->bk) {
-
/* each chunk claims to be free */
-
do_check_free_chunk(av, p);
-
size = chunksize(p);
-
total += size;
-
if (i >= 2) {
-
/* chunk belongs in bin */
-
idx = bin_index(size);
-
assert(idx == i);
-
/* lists are sorted */
-
assert(p->bk == b ||
-
(unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
-
-
if (!in_smallbin_range(size))
-
{
-
if (p->fd_nextsize != NULL)
-
{
-
if (p->fd_nextsize == p)
-
assert (p->bk_nextsize == p);
-
else
-
{
-
if (p->fd_nextsize == first (b))
-
assert (chunksize (p) < chunksize (p->fd_nextsize));
-
else
-
assert (chunksize (p) > chunksize (p->fd_nextsize));
-
-
if (p == first (b))
-
assert (chunksize (p) > chunksize (p->bk_nextsize));
-
else
-
assert (chunksize (p) < chunksize (p->bk_nextsize));
-
}
-
}
-
else
-
assert (p->bk_nextsize == NULL);
-
}
-
} else if (!in_smallbin_range(size))
-
assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
-
/* chunk is followed by a legal chain of inuse chunks */
-
for (q = next_chunk(p);
-
(q != av->top && inuse(q) &&
-
(unsigned long)(chunksize(q)) >= MINSIZE);
-
q = next_chunk(q))
-
do_check_inuse_chunk(av, q);
-
}
-
}
-
-
/* top chunk is OK */
-
check_chunk(av, av->top);
-
-
/* sanity checks for statistics */
-
-
#ifdef NO_THREADS
-
assert(total <= (unsigned long)(mp_.max_total_mem));
-
assert(mp_.n_mmaps >= 0);
-
#endif
-
assert(mp_.n_mmaps <= mp_.max_n_mmaps);
-
-
assert((unsigned long)(av->system_mem) <=
-
(unsigned long)(av->max_system_mem));
-
-
assert((unsigned long)(mp_.mmapped_mem) <=
-
(unsigned long)(mp_.max_mmapped_mem));
-
-
#ifdef NO_THREADS
-
assert((unsigned long)(mp_.max_total_mem) >=
-
(unsigned long)(mp_.mmapped_mem) + (unsigned long)(av->system_mem));
-
#endif
-
}
-
#endif
-
-
-
/* ----------------- Support for debugging hooks -------------------- */
-
#include "hooks.c"
-
-
-
/* ----------- Routines dealing with system allocation -------------- */
-
-
/*
-
sysmalloc handles malloc cases requiring more memory from the system.
-
On entry, it is assumed that av->top does not have enough
-
space to service request for nb bytes, thus requiring that av->top
-
be extended or replaced.
-
*/
-
-
#if __STD_C
-
static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
-
#else
-
static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
-
#endif
-
{
-
mchunkptr old_top; /* incoming value of av->top */
-
INTERNAL_SIZE_T old_size; /* its size */
-
char* old_end; /* its end address */
-
-
long size; /* arg to first MORECORE or mmap call */
-
char* brk; /* return value from MORECORE */
-
-
long correction; /* arg to 2nd MORECORE call */
-
char* snd_brk; /* 2nd return val */
-
-
INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
-
INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
-
char* aligned_brk; /* aligned offset into brk */
-
-
mchunkptr p; /* the allocated/returned chunk */
-
mchunkptr remainder; /* remainder from allocation */
-
unsigned long remainder_size; /* its size */
-
-
unsigned long sum; /* for updating stats */
-
-
size_t pagemask = mp_.pagesize - 1;
-
bool tried_mmap = false;
-
-
-
#if HAVE_MMAP
-
-
/*
-
If have mmap, and the request size meets the mmap threshold, and
-
the system supports mmap, and there are few enough currently
-
allocated mmapped regions, try to directly map this request
-
rather than expanding top.
-
*/
-
-
if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
-
(mp_.n_mmaps < mp_.n_mmaps_max)) {
-
-
char* mm; /* return value from mmap call*/
-
-
try_mmap:
-
/*
-
Round up size to nearest page. For mmapped chunks, the overhead
-
is one SIZE_SZ unit larger than for normal chunks, because there
-
is no following chunk whose prev_size field could be used.
-
*/
-
#if 1
-
/* See the front_misalign handling below, for glibc there is no
-
need for further alignments. */
-
size = (nb + SIZE_SZ + pagemask) & ~pagemask;
-
#else
-
size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
-
#endif
-
tried_mmap = true;
-
-
/* Don't try if size wraps around 0 */
-
if ((unsigned long)(size) > (unsigned long)(nb)) {
-
-
mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-
-
if (mm != MAP_FAILED) {
-
-
/*
-
The offset to the start of the mmapped region is stored
-
in the prev_size field of the chunk. This allows us to adjust
-
returned start address to meet alignment requirements here
-
and in memalign(), and still be able to compute proper
-
address argument for later munmap in free() and realloc().
-
*/
-
-
#if 1
-
/* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
-
MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
-
aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
-
assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
-
#else
-
front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
-
if (front_misalign > 0) {
-
correction = MALLOC_ALIGNMENT - front_misalign;
-
p = (mchunkptr)(mm + correction);
-
p->prev_size = correction;
-
set_head(p, (size - correction) |IS_MMAPPED);
-
}
-
else
-
#endif
-
{
-
p = (mchunkptr)mm;
-
set_head(p, size|IS_MMAPPED);
-
}
-
-
/* update statistics */
-
-
if (++mp_.n_mmaps > mp_.max_n_mmaps)
-
mp_.max_n_mmaps = mp_.n_mmaps;
-
-
sum = mp_.mmapped_mem += size;
-
if (sum > (unsigned long)(mp_.max_mmapped_mem))
-
mp_.max_mmapped_mem = sum;
-
#ifdef NO_THREADS
-
sum += av->system_mem;
-
if (sum > (unsigned long)(mp_.max_total_mem))
-
mp_.max_total_mem = sum;
-
#endif
-
-
check_chunk(av, p);
-
-
return chunk2mem(p);
-
}
-
}
-
}
-
#endif
-
-
/* Record incoming configuration of top */
-
-
old_top = av->top;
-
old_size = chunksize(old_top);
-
old_end = (char*)(chunk_at_offset(old_top, old_size));
-
-
brk = snd_brk = (char*)(MORECORE_FAILURE);
-
-
/*
-
If not the first time through, we require old_size to be
-
at least MINSIZE and to have prev_inuse set.
-
*/
-
-
assert((old_top == initial_top(av) && old_size == 0) ||
-
((unsigned long) (old_size) >= MINSIZE &&
-
prev_inuse(old_top) &&
-
((unsigned long)old_end & pagemask) == 0));
-
-
/* Precondition: not enough current space to satisfy nb request */
-
assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
-
-
#ifndef ATOMIC_FASTBINS
-
/* Precondition: all fastbins are consolidated */
-
assert(!have_fastchunks(av));
-
#endif
-
-
-
if (av != &main_arena) {
-
-
heap_info *old_heap, *heap;
-
size_t old_heap_size;
-
-
/* First try to extend the current heap. */
-
old_heap = heap_for_ptr(old_top);
-
old_heap_size = old_heap->size;
-
if ((long) (MINSIZE + nb - old_size) > 0
-
&& grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
-
av->system_mem += old_heap->size - old_heap_size;
-
arena_mem += old_heap->size - old_heap_size;
-
#if 0
-
if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
-
max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
-
#endif
-
set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
-
| PREV_INUSE);
-
}
-
else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
-
/* Use a newly allocated heap. */
-
heap->ar_ptr = av;
-
heap->prev = old_heap;
-
av->system_mem += heap->size;
-
arena_mem += heap->size;
-
#if 0
-
if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
-
max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
-
#endif
-
/* Set up the new top. */
-
top(av) = chunk_at_offset(heap, sizeof(*heap));
-
set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
-
-
/* Setup fencepost and free the old top chunk. */
-
/* The fencepost takes at least MINSIZE bytes, because it might
-
become the top chunk again later. Note that a footer is set
-
up, too, although the chunk is marked in use. */
-
old_size -= MINSIZE;
-
set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
-
if (old_size >= MINSIZE) {
-
set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
-
set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
-
set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, old_top, 1);
-
#else
-
_int_free(av, old_top);
-
#endif
-
} else {
-
set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
-
set_foot(old_top, (old_size + 2*SIZE_SZ));
-
}
-
}
-
else if (!tried_mmap)
-
/* We can at least try to use to mmap memory. */
-
goto try_mmap;
-
-
} else { /* av == main_arena */
-
-
-
/* Request enough space for nb + pad + overhead */
-
-
size = nb + mp_.top_pad + MINSIZE;
-
-
/*
-
If contiguous, we can subtract out existing space that we hope to
-
combine with new space. We add it back later only if
-
we don't actually get contiguous space.
-
*/
-
-
if (contiguous(av))
-
size -= old_size;
-
-
/*
-
Round to a multiple of page size.
-
If MORECORE is not contiguous, this ensures that we only call it
-
with whole-page arguments. And if MORECORE is contiguous and
-
this is not first time through, this preserves page-alignment of
-
previous calls. Otherwise, we correct to page-align below.
-
*/
-
-
size = (size + pagemask) & ~pagemask;
-
-
/*
-
Don't try to call MORECORE if argument is so big as to appear
-
negative. Note that since mmap takes size_t arg, it may succeed
-
below even if we cannot call MORECORE.
-
*/
-
-
if (size > 0)
-
brk = (char*)(MORECORE(size));
-
-
if (brk != (char*)(MORECORE_FAILURE)) {
-
/* Call the `morecore' hook if necessary. */
-
void (*hook) (void) = force_reg (__after_morecore_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
(*hook) ();
-
} else {
-
/*
-
If have mmap, try using it as a backup when MORECORE fails or
-
cannot be used. This is worth doing on systems that have "holes" in
-
address space, so sbrk cannot extend to give contiguous space, but
-
space is available elsewhere. Note that we ignore mmap max count
-
and threshold limits, since the space will not be used as a
-
segregated mmap region.
-
*/
-
-
#if HAVE_MMAP
-
/* Cannot merge with old top, so add its size back in */
-
if (contiguous(av))
-
size = (size + old_size + pagemask) & ~pagemask;
-
-
/* If we are relying on mmap as backup, then use larger units */
-
if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
-
size = MMAP_AS_MORECORE_SIZE;
-
-
/* Don't try if size wraps around 0 */
-
if ((unsigned long)(size) > (unsigned long)(nb)) {
-
-
char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-
-
if (mbrk != MAP_FAILED) {
-
-
/* We do not need, and cannot use, another sbrk call to find end */
-
brk = mbrk;
-
snd_brk = brk + size;
-
-
/*
-
Record that we no longer have a contiguous sbrk region.
-
After the first time mmap is used as backup, we do not
-
ever rely on contiguous space since this could incorrectly
-
bridge regions.
-
*/
-
set_noncontiguous(av);
-
}
-
}
-
#endif
-
}
-
-
if (brk != (char*)(MORECORE_FAILURE)) {
-
if (mp_.sbrk_base == 0)
-
mp_.sbrk_base = brk;
-
av->system_mem += size;
-
-
/*
-
If MORECORE extends previous space, we can likewise extend top size.
-
*/
-
-
if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
-
set_head(old_top, (size + old_size) | PREV_INUSE);
-
-
else if (contiguous(av) && old_size && brk < old_end) {
-
/* Someone else killed our space.. Can't touch anything. */
-
malloc_printerr (3, "break adjusted to free malloc space", brk);
-
}
-
-
/*
-
Otherwise, make adjustments:
-
-
* If the first time through or noncontiguous, we need to call sbrk
-
just to find out where the end of memory lies.
-
-
* We need to ensure that all returned chunks from malloc will meet
-
MALLOC_ALIGNMENT
-
-
* If there was an intervening foreign sbrk, we need to adjust sbrk
-
request size to account for fact that we will not be able to
-
combine new space with existing space in old_top.
-
-
* Almost all systems internally allocate whole pages at a time, in
-
which case we might as well use the whole last page of request.
-
So we allocate enough more memory to hit a page boundary now,
-
which in turn causes future contiguous calls to page-align.
-
*/
-
-
else {
-
front_misalign = 0;
-
end_misalign = 0;
-
correction = 0;
-
aligned_brk = brk;
-
-
/* handle contiguous cases */
-
if (contiguous(av)) {
-
-
/* Count foreign sbrk as system_mem. */
-
if (old_size)
-
av->system_mem += brk - old_end;
-
-
/* Guarantee alignment of first new chunk made from this space */
-
-
front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
-
if (front_misalign > 0) {
-
-
/*
-
Skip over some bytes to arrive at an aligned position.
-
We don't need to specially mark these wasted front bytes.
-
They will never be accessed anyway because
-
prev_inuse of av->top (and any chunk created from its start)
-
is always true after initialization.
-
*/
-
-
correction = MALLOC_ALIGNMENT - front_misalign;
-
aligned_brk += correction;
-
}
-
-
/*
-
If this isn't adjacent to existing space, then we will not
-
be able to merge with old_top space, so must add to 2nd request.
-
*/
-
-
correction += old_size;
-
-
/* Extend the end address to hit a page boundary */
-
end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
-
correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
-
-
assert(correction >= 0);
-
snd_brk = (char*)(MORECORE(correction));
-
-
/*
-
If can't allocate correction, try to at least find out current
-
brk. It might be enough to proceed without failing.
-
-
Note that if second sbrk did NOT fail, we assume that space
-
is contiguous with first sbrk. This is a safe assumption unless
-
program is multithreaded but doesn't use locks and a foreign sbrk
-
occurred between our first and second calls.
-
*/
-
-
if (snd_brk == (char*)(MORECORE_FAILURE)) {
-
correction = 0;
-
snd_brk = (char*)(MORECORE(0));
-
} else {
-
/* Call the `morecore' hook if necessary. */
-
void (*hook) (void) = force_reg (__after_morecore_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
(*hook) ();
-
}
-
}
-
-
/* handle non-contiguous cases */
-
else {
-
/* MORECORE/mmap must correctly align */
-
assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
-
-
/* Find out current end of memory */
-
if (snd_brk == (char*)(MORECORE_FAILURE)) {
-
snd_brk = (char*)(MORECORE(0));
-
}
-
}
-
-
/* Adjust top based on results of second sbrk */
-
if (snd_brk != (char*)(MORECORE_FAILURE)) {
-
av->top = (mchunkptr)aligned_brk;
-
set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
-
av->system_mem += correction;
-
-
/*
-
If not the first time through, we either have a
-
gap due to foreign sbrk or a non-contiguous region. Insert a
-
double fencepost at old_top to prevent consolidation with space
-
we don't own. These fenceposts are artificial chunks that are
-
marked as inuse and are in any case too small to use. We need
-
two to make sizes and alignments work out.
-
*/
-
-
if (old_size != 0) {
-
/*
-
Shrink old_top to insert fenceposts, keeping size a
-
multiple of MALLOC_ALIGNMENT. We know there is at least
-
enough space in old_top to do this.
-
*/
-
old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
-
set_head(old_top, old_size | PREV_INUSE);
-
-
/*
-
Note that the following assignments completely overwrite
-
old_top when old_size was previously MINSIZE. This is
-
intentional. We need the fencepost, even if old_top otherwise gets
-
lost.
-
*/
-
chunk_at_offset(old_top, old_size )->size =
-
(2*SIZE_SZ)|PREV_INUSE;
-
-
chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
-
(2*SIZE_SZ)|PREV_INUSE;
-
-
/* If possible, release the rest. */
-
if (old_size >= MINSIZE) {
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, old_top, 1);
-
#else
-
_int_free(av, old_top);
-
#endif
-
}
-
-
}
-
}
-
}
-
-
/* Update statistics */
-
#ifdef NO_THREADS
-
sum = av->system_mem + mp_.mmapped_mem;
-
if (sum > (unsigned long)(mp_.max_total_mem))
-
mp_.max_total_mem = sum;
-
#endif
-
-
}
-
-
} /* if (av != &main_arena) */
-
-
if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
-
av->max_system_mem = av->system_mem;
-
check_malloc_state(av);
-
-
/* finally, do the allocation */
-
p = av->top;
-
size = chunksize(p);
-
-
/* check that one of the above allocation paths succeeded */
-
if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
-
remainder_size = size - nb;
-
remainder = chunk_at_offset(p, nb);
-
av->top = remainder;
-
set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE);
-
check_malloced_chunk(av, p, nb);
-
return chunk2mem(p);
-
}
-
-
/* catch all failure paths */
-
MALLOC_FAILURE_ACTION;
-
return 0;
-
}
-
-
-
/*
-
sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
-
to the system (via negative arguments to sbrk) if there is unused
-
memory at the `high' end of the malloc pool. It is called
-
automatically by free() when top space exceeds the trim
-
threshold. It is also called by the public malloc_trim routine. It
-
returns 1 if it actually released any memory, else 0.
-
*/
-
-
#if __STD_C
-
static int sYSTRIm(size_t pad, mstate av)
-
#else
-
static int sYSTRIm(pad, av) size_t pad; mstate av;
-
#endif
-
{
-
long top_size; /* Amount of top-most memory */
-
long extra; /* Amount to release */
-
long released; /* Amount actually released */
-
char* current_brk; /* address returned by pre-check sbrk call */
-
char* new_brk; /* address returned by post-check sbrk call */
-
size_t pagesz;
-
-
pagesz = mp_.pagesize;
-
top_size = chunksize(av->top);
-
-
/* Release in pagesize units, keeping at least one page */
-
extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1);
-
-
if (extra > 0) {
-
-
/*
-
Only proceed if end of memory is where we last set it.
-
This avoids problems if there were foreign sbrk calls.
-
*/
-
current_brk = (char*)(MORECORE(0));
-
if (current_brk == (char*)(av->top) + top_size) {
-
-
/*
-
Attempt to release memory. We ignore MORECORE return value,
-
and instead call again to find out where new end of memory is.
-
This avoids problems if first call releases less than we asked,
-
of if failure somehow altered brk value. (We could still
-
encounter problems if it altered brk in some very bad way,
-
but the only thing we can do is adjust anyway, which will cause
-
some downstream failure.)
-
*/
-
-
MORECORE(-extra);
-
/* Call the `morecore' hook if necessary. */
-
void (*hook) (void) = force_reg (__after_morecore_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
(*hook) ();
-
new_brk = (char*)(MORECORE(0));
-
-
if (new_brk != (char*)MORECORE_FAILURE) {
-
released = (long)(current_brk - new_brk);
-
-
if (released != 0) {
-
/* Success. Adjust top. */
-
av->system_mem -= released;
-
set_head(av->top, (top_size - released) | PREV_INUSE);
-
check_malloc_state(av);
-
return 1;
-
}
-
}
-
}
-
}
-
return 0;
-
}
-
-
#ifdef HAVE_MMAP
-
-
static void
-
internal_function
-
#if __STD_C
-
munmap_chunk(mchunkptr p)
-
#else
-
munmap_chunk(p) mchunkptr p;
-
#endif
-
{
-
INTERNAL_SIZE_T size = chunksize(p);
-
-
assert (chunk_is_mmapped(p));
-
#if 0
-
assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
-
assert((mp_.n_mmaps > 0));
-
#endif
-
-
uintptr_t block = (uintptr_t) p - p->prev_size;
-
size_t total_size = p->prev_size + size;
-
/* Unfortunately we have to do the compilers job by hand here. Normally
-
we would test BLOCK and TOTAL-SIZE separately for compliance with the
-
page size. But gcc does not recognize the optimization possibility
-
(in the moment at least) so we combine the two values into one before
-
the bit test. */
-
if (__builtin_expect (((block | total_size) & (mp_.pagesize - 1)) != 0, 0))
-
{
-
malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
-
chunk2mem (p));
-
return;
-
}
-
-
mp_.n_mmaps--;
-
mp_.mmapped_mem -= total_size;
-
-
int ret __attribute__ ((unused)) = munmap((char *)block, total_size);
-
-
/* munmap returns non-zero on failure */
-
assert(ret == 0);
-
}
-
-
#if HAVE_MREMAP
-
-
static mchunkptr
-
internal_function
-
#if __STD_C
-
mremap_chunk(mchunkptr p, size_t new_size)
-
#else
-
mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
-
#endif
-
{
-
size_t page_mask = mp_.pagesize - 1;
-
INTERNAL_SIZE_T offset = p->prev_size;
-
INTERNAL_SIZE_T size = chunksize(p);
-
char *cp;
-
-
assert (chunk_is_mmapped(p));
-
#if 0
-
assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
-
assert((mp_.n_mmaps > 0));
-
#endif
-
assert(((size + offset) & (mp_.pagesize-1)) == 0);
-
-
/* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
-
new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
-
-
/* No need to remap if the number of pages does not change. */
-
if (size + offset == new_size)
-
return p;
-
-
cp = (char *)mremap((char *)p - offset, size + offset, new_size,
-
MREMAP_MAYMOVE);
-
-
if (cp == MAP_FAILED) return 0;
-
-
p = (mchunkptr)(cp + offset);
-
-
assert(aligned_OK(chunk2mem(p)));
-
-
assert((p->prev_size == offset));
-
set_head(p, (new_size - offset)|IS_MMAPPED);
-
-
mp_.mmapped_mem -= size + offset;
-
mp_.mmapped_mem += new_size;
-
if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
-
mp_.max_mmapped_mem = mp_.mmapped_mem;
-
#ifdef NO_THREADS
-
if ((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
-
mp_.max_total_mem)
-
mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
-
#endif
-
return p;
-
}
-
-
#endif /* HAVE_MREMAP */
-
-
#endif /* HAVE_MMAP */
-
-
/*------------------------ Public wrappers. --------------------------------*/
-
-
Void_t*
-
public_mALLOc(size_t bytes)
-
{
-
mstate ar_ptr;
-
Void_t *victim;
-
-
__malloc_ptr_t (*hook) (size_t, __const __malloc_ptr_t)
-
= force_reg (__malloc_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
return (*hook)(bytes, RETURN_ADDRESS (0));
-
-
arena_lookup(ar_ptr);
-
#if 0
-
// XXX We need double-word CAS and fastbins must be extended to also
-
// XXX hold a generation counter for each entry.
-
if (ar_ptr) {
-
INTERNAL_SIZE_T nb; /* normalized request size */
-
checked_request2size(bytes, nb);
-
if (nb <= get_max_fast ()) {
-
long int idx = fastbin_index(nb);
-
mfastbinptr* fb = &fastbin (ar_ptr, idx);
-
mchunkptr pp = *fb;
-
mchunkptr v;
-
do
-
{
-
v = pp;
-
if (v == NULL)
-
break;
-
}
-
while ((pp = catomic_compare_and_exchange_val_acq (fb, v->fd, v)) != v);
-
if (v != 0) {
-
if (__builtin_expect (fastbin_index (chunksize (v)) != idx, 0))
-
malloc_printerr (check_action, "malloc(): memory corruption (fast)",
-
chunk2mem (v));
-
check_remalloced_chunk(ar_ptr, v, nb);
-
void *p = chunk2mem(v);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
}
-
#endif
-
-
arena_lock(ar_ptr, bytes);
-
if(!ar_ptr)
-
return 0;
-
victim = _int_malloc(ar_ptr, bytes);
-
if(!victim) {
-
/* Maybe the failure is due to running out of mmapped areas. */
-
if(ar_ptr != &main_arena) {
-
(void)mutex_unlock(&ar_ptr->mutex);
-
ar_ptr = &main_arena;
-
(void)mutex_lock(&ar_ptr->mutex);
-
victim = _int_malloc(ar_ptr, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
} else {
-
#if USE_ARENAS
-
/* ... or sbrk() has failed and there is still a chance to mmap() */
-
ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
-
(void)mutex_unlock(&main_arena.mutex);
-
if(ar_ptr) {
-
victim = _int_malloc(ar_ptr, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
}
-
#endif
-
}
-
} else
-
(void)mutex_unlock(&ar_ptr->mutex);
-
assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
-
ar_ptr == arena_for_chunk(mem2chunk(victim)));
-
return victim;
-
}
-
#ifdef libc_hidden_def
-
libc_hidden_def(public_mALLOc)
-
#endif
-
-
void
-
public_fREe(Void_t* mem)
-
{
-
mstate ar_ptr;
-
mchunkptr p; /* chunk corresponding to mem */
-
-
void (*hook) (__malloc_ptr_t, __const __malloc_ptr_t)
-
= force_reg (__free_hook);
-
if (__builtin_expect (hook != NULL, 0)) {
-
(*hook)(mem, RETURN_ADDRESS (0));
-
return;
-
}
-
-
if (mem == 0) /* free(0) has no effect */
-
return;
-
-
p = mem2chunk(mem);
-
-
#if HAVE_MMAP
-
if (chunk_is_mmapped(p)) /* release mmapped memory. */
-
{
-
/* see if the dynamic brk/mmap threshold needs adjusting */
-
if (!mp_.no_dyn_threshold
-
&& p->size > mp_.mmap_threshold
-
&& p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
-
{
-
mp_.mmap_threshold = chunksize (p);
-
mp_.trim_threshold = 2 * mp_.mmap_threshold;
-
}
-
munmap_chunk(p);
-
return;
-
}
-
#endif
-
-
ar_ptr = arena_for_chunk(p);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(ar_ptr, p, 0);
-
#else
-
# if THREAD_STATS
-
if(!mutex_trylock(&ar_ptr->mutex))
-
++(ar_ptr->stat_lock_direct);
-
else {
-
(void)mutex_lock(&ar_ptr->mutex);
-
++(ar_ptr->stat_lock_wait);
-
}
-
# else
-
(void)mutex_lock(&ar_ptr->mutex);
-
# endif
-
_int_free(ar_ptr, p);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
#endif
-
}
-
#ifdef libc_hidden_def
-
libc_hidden_def (public_fREe)
-
#endif
-
-
Void_t*
-
public_rEALLOc(Void_t* oldmem, size_t bytes)
-
{
-
mstate ar_ptr;
-
INTERNAL_SIZE_T nb; /* padded request size */
-
-
Void_t* newp; /* chunk to return */
-
-
__malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, __const __malloc_ptr_t) =
-
force_reg (__realloc_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
-
-
#if REALLOC_ZERO_BYTES_FREES
-
if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
-
#endif
-
-
/* realloc of null is supposed to be same as malloc */
-
if (oldmem == 0) return public_mALLOc(bytes);
-
-
/* chunk corresponding to oldmem */
-
const mchunkptr oldp = mem2chunk(oldmem);
-
/* its size */
-
const INTERNAL_SIZE_T oldsize = chunksize(oldp);
-
-
/* Little security check which won't hurt performance: the
-
allocator never wrapps around at the end of the address space.
-
Therefore we can exclude some size values which might appear
-
here by accident or by "design" from some intruder. */
-
if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
-
|| __builtin_expect (misaligned_chunk (oldp), 0))
-
{
-
malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
-
return NULL;
-
}
-
-
checked_request2size(bytes, nb);
-
-
#if HAVE_MMAP
-
if (chunk_is_mmapped(oldp))
-
{
-
Void_t* newmem;
-
-
#if HAVE_MREMAP
-
newp = mremap_chunk(oldp, nb);
-
if(newp) return chunk2mem(newp);
-
#endif
-
/* Note the extra SIZE_SZ overhead. */
-
if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
-
/* Must alloc, copy, free. */
-
newmem = public_mALLOc(bytes);
-
if (newmem == 0) return 0; /* propagate failure */
-
MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
-
munmap_chunk(oldp);
-
return newmem;
-
}
-
#endif
-
-
ar_ptr = arena_for_chunk(oldp);
-
#if THREAD_STATS
-
if(!mutex_trylock(&ar_ptr->mutex))
-
++(ar_ptr->stat_lock_direct);
-
else {
-
(void)mutex_lock(&ar_ptr->mutex);
-
++(ar_ptr->stat_lock_wait);
-
}
-
#else
-
(void)mutex_lock(&ar_ptr->mutex);
-
#endif
-
-
#if !defined NO_THREADS && !defined PER_THREAD
-
/* As in malloc(), remember this arena for the next allocation. */
-
tsd_setspecific(arena_key, (Void_t *)ar_ptr);
-
#endif
-
-
newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
-
-
(void)mutex_unlock(&ar_ptr->mutex);
-
assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
-
ar_ptr == arena_for_chunk(mem2chunk(newp)));
-
-
if (newp == NULL)
-
{
-
/* Try harder to allocate memory in other arenas. */
-
newp = public_mALLOc(bytes);
-
if (newp != NULL)
-
{
-
MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(ar_ptr, oldp, 0);
-
#else
-
# if THREAD_STATS
-
if(!mutex_trylock(&ar_ptr->mutex))
-
++(ar_ptr->stat_lock_direct);
-
else {
-
(void)mutex_lock(&ar_ptr->mutex);
-
++(ar_ptr->stat_lock_wait);
-
}
-
# else
-
(void)mutex_lock(&ar_ptr->mutex);
-
# endif
-
_int_free(ar_ptr, oldp);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
#endif
-
}
-
}
-
-
return newp;
-
}
-
#ifdef libc_hidden_def
-
libc_hidden_def (public_rEALLOc)
-
#endif
-
-
Void_t*
-
public_mEMALIGn(size_t alignment, size_t bytes)
-
{
-
mstate ar_ptr;
-
Void_t *p;
-
-
__malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
-
__const __malloc_ptr_t)) =
-
force_reg (__memalign_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
-
-
/* If need less alignment than we give anyway, just relay to malloc */
-
if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
-
-
/* Otherwise, ensure that it is at least a minimum chunk size */
-
if (alignment < MINSIZE) alignment = MINSIZE;
-
-
arena_get(ar_ptr, bytes + alignment + MINSIZE);
-
if(!ar_ptr)
-
return 0;
-
p = _int_memalign(ar_ptr, alignment, bytes);
-
if(!p) {
-
/* Maybe the failure is due to running out of mmapped areas. */
-
if(ar_ptr != &main_arena) {
-
(void)mutex_unlock(&ar_ptr->mutex);
-
ar_ptr = &main_arena;
-
(void)mutex_lock(&ar_ptr->mutex);
-
p = _int_memalign(ar_ptr, alignment, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
} else {
-
#if USE_ARENAS
-
/* ... or sbrk() has failed and there is still a chance to mmap() */
-
mstate prev = ar_ptr->next ? ar_ptr : 0;
-
(void)mutex_unlock(&ar_ptr->mutex);
-
ar_ptr = arena_get2(prev, bytes);
-
if(ar_ptr) {
-
p = _int_memalign(ar_ptr, alignment, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
}
-
#endif
-
}
-
} else
-
(void)mutex_unlock(&ar_ptr->mutex);
-
assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
-
ar_ptr == arena_for_chunk(mem2chunk(p)));
-
return p;
-
}
-
#ifdef libc_hidden_def
-
libc_hidden_def (public_mEMALIGn)
-
#endif
-
-
Void_t*
-
public_vALLOc(size_t bytes)
-
{
-
mstate ar_ptr;
-
Void_t *p;
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
-
size_t pagesz = mp_.pagesize;
-
-
__malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
-
__const __malloc_ptr_t)) =
-
force_reg (__memalign_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
-
-
arena_get(ar_ptr, bytes + pagesz + MINSIZE);
-
if(!ar_ptr)
-
return 0;
-
p = _int_valloc(ar_ptr, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
if(!p) {
-
/* Maybe the failure is due to running out of mmapped areas. */
-
if(ar_ptr != &main_arena) {
-
ar_ptr = &main_arena;
-
(void)mutex_lock(&ar_ptr->mutex);
-
p = _int_memalign(ar_ptr, pagesz, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
} else {
-
#if USE_ARENAS
-
/* ... or sbrk() has failed and there is still a chance to mmap() */
-
ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
-
if(ar_ptr) {
-
p = _int_memalign(ar_ptr, pagesz, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
}
-
#endif
-
}
-
}
-
assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
-
ar_ptr == arena_for_chunk(mem2chunk(p)));
-
-
return p;
-
}
-
-
Void_t*
-
public_pVALLOc(size_t bytes)
-
{
-
mstate ar_ptr;
-
Void_t *p;
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
-
size_t pagesz = mp_.pagesize;
-
size_t page_mask = mp_.pagesize - 1;
-
size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
-
-
__malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
-
__const __malloc_ptr_t)) =
-
force_reg (__memalign_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
-
-
arena_get(ar_ptr, bytes + 2*pagesz + MINSIZE);
-
p = _int_pvalloc(ar_ptr, bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
if(!p) {
-
/* Maybe the failure is due to running out of mmapped areas. */
-
if(ar_ptr != &main_arena) {
-
ar_ptr = &main_arena;
-
(void)mutex_lock(&ar_ptr->mutex);
-
p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
} else {
-
#if USE_ARENAS
-
/* ... or sbrk() has failed and there is still a chance to mmap() */
-
ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0,
-
bytes + 2*pagesz + MINSIZE);
-
if(ar_ptr) {
-
p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
}
-
#endif
-
}
-
}
-
assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
-
ar_ptr == arena_for_chunk(mem2chunk(p)));
-
-
return p;
-
}
-
-
Void_t*
-
public_cALLOc(size_t n, size_t elem_size)
-
{
-
mstate av;
-
mchunkptr oldtop, p;
-
INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
-
Void_t* mem;
-
unsigned long clearsize;
-
unsigned long nclears;
-
INTERNAL_SIZE_T* d;
-
-
/* size_t is unsigned so the behavior on overflow is defined. */
-
bytes = n * elem_size;
-
#define HALF_INTERNAL_SIZE_T \
-
(((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
-
if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
-
if (elem_size != 0 && bytes / elem_size != n) {
-
MALLOC_FAILURE_ACTION;
-
return 0;
-
}
-
}
-
-
__malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
-
force_reg (__malloc_hook);
-
if (__builtin_expect (hook != NULL, 0)) {
-
sz = bytes;
-
mem = (*hook)(sz, RETURN_ADDRESS (0));
-
if(mem == 0)
-
return 0;
-
#ifdef HAVE_MEMCPY
-
return memset(mem, 0, sz);
-
#else
-
while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
-
return mem;
-
#endif
-
}
-
-
sz = bytes;
-
-
arena_get(av, sz);
-
if(!av)
-
return 0;
-
-
/* Check if we hand out the top chunk, in which case there may be no
-
need to clear. */
-
#if MORECORE_CLEARS
-
oldtop = top(av);
-
oldtopsize = chunksize(top(av));
-
#if MORECORE_CLEARS < 2
-
/* Only newly allocated memory is guaranteed to be cleared. */
-
if (av == &main_arena &&
-
oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
-
oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
-
#endif
-
if (av != &main_arena)
-
{
-
heap_info *heap = heap_for_ptr (oldtop);
-
if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
-
oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
-
}
-
#endif
-
mem = _int_malloc(av, sz);
-
-
/* Only clearing follows, so we can unlock early. */
-
(void)mutex_unlock(&av->mutex);
-
-
assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
-
av == arena_for_chunk(mem2chunk(mem)));
-
-
if (mem == 0) {
-
/* Maybe the failure is due to running out of mmapped areas. */
-
if(av != &main_arena) {
-
(void)mutex_lock(&main_arena.mutex);
-
mem = _int_malloc(&main_arena, sz);
-
(void)mutex_unlock(&main_arena.mutex);
-
} else {
-
#if USE_ARENAS
-
/* ... or sbrk() has failed and there is still a chance to mmap() */
-
(void)mutex_lock(&main_arena.mutex);
-
av = arena_get2(av->next ? av : 0, sz);
-
(void)mutex_unlock(&main_arena.mutex);
-
if(av) {
-
mem = _int_malloc(av, sz);
-
(void)mutex_unlock(&av->mutex);
-
}
-
#endif
-
}
-
if (mem == 0) return 0;
-
}
-
p = mem2chunk(mem);
-
-
/* Two optional cases in which clearing not necessary */
-
#if HAVE_MMAP
-
if (chunk_is_mmapped (p))
-
{
-
if (__builtin_expect (perturb_byte, 0))
-
MALLOC_ZERO (mem, sz);
-
return mem;
-
}
-
#endif
-
-
csz = chunksize(p);
-
-
#if MORECORE_CLEARS
-
if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
-
/* clear only the bytes from non-freshly-sbrked memory */
-
csz = oldtopsize;
-
}
-
#endif
-
-
/* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
-
contents have an odd number of INTERNAL_SIZE_T-sized words;
-
minimally 3. */
-
d = (INTERNAL_SIZE_T*)mem;
-
clearsize = csz - SIZE_SZ;
-
nclears = clearsize / sizeof(INTERNAL_SIZE_T);
-
assert(nclears >= 3);
-
-
if (nclears > 9)
-
MALLOC_ZERO(d, clearsize);
-
-
else {
-
*(d+0) = 0;
-
*(d+1) = 0;
-
*(d+2) = 0;
-
if (nclears > 4) {
-
*(d+3) = 0;
-
*(d+4) = 0;
-
if (nclears > 6) {
-
*(d+5) = 0;
-
*(d+6) = 0;
-
if (nclears > 8) {
-
*(d+7) = 0;
-
*(d+8) = 0;
-
}
-
}
-
}
-
}
-
-
return mem;
-
}
-
-
#ifndef _LIBC
-
-
Void_t**
-
public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
-
{
-
mstate ar_ptr;
-
Void_t** m;
-
-
arena_get(ar_ptr, n*elem_size);
-
if(!ar_ptr)
-
return 0;
-
-
m = _int_icalloc(ar_ptr, n, elem_size, chunks);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
return m;
-
}
-
-
Void_t**
-
public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
-
{
-
mstate ar_ptr;
-
Void_t** m;
-
-
arena_get(ar_ptr, 0);
-
if(!ar_ptr)
-
return 0;
-
-
m = _int_icomalloc(ar_ptr, n, sizes, chunks);
-
(void)mutex_unlock(&ar_ptr->mutex);
-
return m;
-
}
-
-
void
-
public_cFREe(Void_t* m)
-
{
-
public_fREe(m);
-
}
-
-
#endif /* _LIBC */
-
-
int
-
public_mTRIm(size_t s)
-
{
-
int result = 0;
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
-
mstate ar_ptr = &main_arena;
-
do
-
{
-
(void) mutex_lock (&ar_ptr->mutex);
-
result |= mTRIm (ar_ptr, s);
-
(void) mutex_unlock (&ar_ptr->mutex);
-
-
ar_ptr = ar_ptr->next;
-
}
-
while (ar_ptr != &main_arena);
-
-
return result;
-
}
-
-
size_t
-
public_mUSABLe(Void_t* m)
-
{
-
size_t result;
-
-
result = mUSABLe(m);
-
return result;
-
}
-
-
void
-
public_mSTATs()
-
{
-
mSTATs();
-
}
-
-
struct mallinfo public_mALLINFo()
-
{
-
struct mallinfo m;
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
(void)mutex_lock(&main_arena.mutex);
-
m = mALLINFo(&main_arena);
-
(void)mutex_unlock(&main_arena.mutex);
-
return m;
-
}
-
-
int
-
public_mALLOPt(int p, int v)
-
{
-
int result;
-
result = mALLOPt(p, v);
-
return result;
-
}
-
-
/*
-
------------------------------ malloc ------------------------------
-
*/
-
-
static Void_t*
-
_int_malloc(mstate av, size_t bytes)
-
{
-
INTERNAL_SIZE_T nb; /* normalized request size */
-
unsigned int idx; /* associated bin index */
-
mbinptr bin; /* associated bin */
-
-
mchunkptr victim; /* inspected/selected chunk */
-
INTERNAL_SIZE_T size; /* its size */
-
int victim_index; /* its bin index */
-
-
mchunkptr remainder; /* remainder from a split */
-
unsigned long remainder_size; /* its size */
-
-
unsigned int block; /* bit map traverser */
-
unsigned int bit; /* bit map traverser */
-
unsigned int map; /* current word of binmap */
-
-
mchunkptr fwd; /* misc temp for linking */
-
mchunkptr bck; /* misc temp for linking */
-
-
const char *errstr = NULL;
-
-
/*
-
Convert request size to internal form by adding SIZE_SZ bytes
-
overhead plus possibly more to obtain necessary alignment and/or
-
to obtain a size of at least MINSIZE, the smallest allocatable
-
size. Also, checked_request2size traps (returning 0) request sizes
-
that are so large that they wrap around zero when padded and
-
aligned.
-
*/
-
-
checked_request2size(bytes, nb);
-
-
/*
-
If the size qualifies as a fastbin, first check corresponding bin.
-
This code is safe to execute even if av is not yet initialized, so we
-
can try it without checking, which saves some time on this fast path.
-
*/
-
-
if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
-
idx = fastbin_index(nb);
-
mfastbinptr* fb = &fastbin (av, idx);
-
#ifdef ATOMIC_FASTBINS
-
mchunkptr pp = *fb;
-
do
-
{
-
victim = pp;
-
if (victim == NULL)
-
break;
-
}
-
while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
-
!= victim);
-
#else
-
victim = *fb;
-
#endif
-
if (victim != 0) {
-
if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
-
{
-
errstr = "malloc(): memory corruption (fast)";
-
errout:
-
malloc_printerr (check_action, errstr, chunk2mem (victim));
-
return NULL;
-
}
-
#ifndef ATOMIC_FASTBINS
-
*fb = victim->fd;
-
#endif
-
check_remalloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
-
/*
-
If a small request, check regular bin. Since these "smallbins"
-
hold one size each, no searching within bins is necessary.
-
(For a large request, we need to wait until unsorted chunks are
-
processed to find best fit. But for small ones, fits are exact
-
anyway, so we can check now, which is faster.)
-
*/
-
-
if (in_smallbin_range(nb)) {
-
idx = smallbin_index(nb);
-
bin = bin_at(av,idx);
-
-
if ( (victim = last(bin)) != bin) {
-
if (victim == 0) /* initialization check */
-
malloc_consolidate(av);
-
else {
-
bck = victim->bk;
-
if (__builtin_expect (bck->fd != victim, 0))
-
{
-
errstr = "malloc(): smallbin double linked list corrupted";
-
goto errout;
-
}
-
set_inuse_bit_at_offset(victim, nb);
-
bin->bk = bck;
-
bck->fd = bin;
-
-
if (av != &main_arena)
-
victim->size |= NON_MAIN_ARENA;
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
}
-
-
/*
-
If this is a large request, consolidate fastbins before continuing.
-
While it might look excessive to kill all fastbins before
-
even seeing if there is space available, this avoids
-
fragmentation problems normally associated with fastbins.
-
Also, in practice, programs tend to have runs of either small or
-
large requests, but less often mixtures, so consolidation is not
-
invoked all that often in most programs. And the programs that
-
it is called frequently in otherwise tend to fragment.
-
*/
-
-
else {
-
idx = largebin_index(nb);
-
if (have_fastchunks(av))
-
malloc_consolidate(av);
-
}
-
-
/*
-
Process recently freed or remaindered chunks, taking one only if
-
it is exact fit, or, if this a small request, the chunk is remainder from
-
the most recent non-exact fit. Place other traversed chunks in
-
bins. Note that this step is the only place in any routine where
-
chunks are placed in bins.
-
-
The outer loop here is needed because we might not realize until
-
near the end of malloc that we should have consolidated, so must
-
do so and retry. This happens at most once, and only when we would
-
otherwise need to expand memory to service a "small" request.
-
*/
-
-
for(;;) {
-
-
int iters = 0;
-
while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
-
bck = victim->bk;
-
if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
-
|| __builtin_expect (victim->size > av->system_mem, 0))
-
malloc_printerr (check_action, "malloc(): memory corruption",
-
chunk2mem (victim));
-
size = chunksize(victim);
-
-
/*
-
If a small request, try to use last remainder if it is the
-
only chunk in unsorted bin. This helps promote locality for
-
runs of consecutive small requests. This is the only
-
exception to best-fit, and applies only when there is
-
no exact fit for a small chunk.
-
*/
-
-
if (in_smallbin_range(nb) &&
-
bck == unsorted_chunks(av) &&
-
victim == av->last_remainder &&
-
(unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
-
-
/* split and reattach remainder */
-
remainder_size = size - nb;
-
remainder = chunk_at_offset(victim, nb);
-
unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-
av->last_remainder = remainder;
-
remainder->bk = remainder->fd = unsorted_chunks(av);
-
if (!in_smallbin_range(remainder_size))
-
{
-
remainder->fd_nextsize = NULL;
-
remainder->bk_nextsize = NULL;
-
}
-
-
set_head(victim, nb | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE);
-
set_foot(remainder, remainder_size);
-
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
-
/* remove from unsorted list */
-
unsorted_chunks(av)->bk = bck;
-
bck->fd = unsorted_chunks(av);
-
-
/* Take now instead of binning if exact fit */
-
-
if (size == nb) {
-
set_inuse_bit_at_offset(victim, size);
-
if (av != &main_arena)
-
victim->size |= NON_MAIN_ARENA;
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
-
/* place chunk in bin */
-
-
if (in_smallbin_range(size)) {
-
victim_index = smallbin_index(size);
-
bck = bin_at(av, victim_index);
-
fwd = bck->fd;
-
}
-
else {
-
victim_index = largebin_index(size);
-
bck = bin_at(av, victim_index);
-
fwd = bck->fd;
-
-
/* maintain large bins in sorted order */
-
if (fwd != bck) {
-
/* Or with inuse bit to speed comparisons */
-
size |= PREV_INUSE;
-
/* if smaller than smallest, bypass loop below */
-
assert((bck->bk->size & NON_MAIN_ARENA) == 0);
-
if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
-
fwd = bck;
-
bck = bck->bk;
-
-
victim->fd_nextsize = fwd->fd;
-
victim->bk_nextsize = fwd->fd->bk_nextsize;
-
fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
-
}
-
else {
-
assert((fwd->size & NON_MAIN_ARENA) == 0);
-
while ((unsigned long) size < fwd->size)
-
{
-
fwd = fwd->fd_nextsize;
-
assert((fwd->size & NON_MAIN_ARENA) == 0);
-
}
-
-
if ((unsigned long) size == (unsigned long) fwd->size)
-
/* Always insert in the second position. */
-
fwd = fwd->fd;
-
else
-
{
-
victim->fd_nextsize = fwd;
-
victim->bk_nextsize = fwd->bk_nextsize;
-
fwd->bk_nextsize = victim;
-
victim->bk_nextsize->fd_nextsize = victim;
-
}
-
bck = fwd->bk;
-
}
-
} else
-
victim->fd_nextsize = victim->bk_nextsize = victim;
-
}
-
-
mark_bin(av, victim_index);
-
victim->bk = bck;
-
victim->fd = fwd;
-
fwd->bk = victim;
-
bck->fd = victim;
-
-
#define MAX_ITERS 10000
-
if (++iters >= MAX_ITERS)
-
break;
-
}
-
-
/*
-
If a large request, scan through the chunks of current bin in
-
sorted order to find smallest that fits. Use the skip list for this.
-
*/
-
-
if (!in_smallbin_range(nb)) {
-
bin = bin_at(av, idx);
-
-
/* skip scan if empty or largest chunk is too small */
-
if ((victim = first(bin)) != bin &&
-
(unsigned long)(victim->size) >= (unsigned long)(nb)) {
-
-
victim = victim->bk_nextsize;
-
while (((unsigned long)(size = chunksize(victim)) <
-
(unsigned long)(nb)))
-
victim = victim->bk_nextsize;
-
-
/* Avoid removing the first entry for a size so that the skip
-
list does not have to be rerouted. */
-
if (victim != last(bin) && victim->size == victim->fd->size)
-
victim = victim->fd;
-
-
remainder_size = size - nb;
-
unlink(victim, bck, fwd);
-
-
/* Exhaust */
-
if (remainder_size < MINSIZE) {
-
set_inuse_bit_at_offset(victim, size);
-
if (av != &main_arena)
-
victim->size |= NON_MAIN_ARENA;
-
}
-
/* Split */
-
else {
-
remainder = chunk_at_offset(victim, nb);
-
/* We cannot assume the unsorted list is empty and therefore
-
have to perform a complete insert here. */
-
bck = unsorted_chunks(av);
-
fwd = bck->fd;
-
if (__builtin_expect (fwd->bk != bck, 0))
-
{
-
errstr = "malloc(): corrupted unsorted chunks";
-
goto errout;
-
}
-
remainder->bk = bck;
-
remainder->fd = fwd;
-
bck->fd = remainder;
-
fwd->bk = remainder;
-
if (!in_smallbin_range(remainder_size))
-
{
-
remainder->fd_nextsize = NULL;
-
remainder->bk_nextsize = NULL;
-
}
-
set_head(victim, nb | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE);
-
set_foot(remainder, remainder_size);
-
}
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
-
/*
-
Search for a chunk by scanning bins, starting with next largest
-
bin. This search is strictly by best-fit; i.e., the smallest
-
(with ties going to approximately the least recently used) chunk
-
that fits is selected.
-
-
The bitmap avoids needing to check that most blocks are nonempty.
-
The particular case of skipping all bins during warm-up phases
-
when no chunks have been returned yet is faster than it might look.
-
*/
-
-
++idx;
-
bin = bin_at(av,idx);
-
block = idx2block(idx);
-
map = av->binmap[block];
-
bit = idx2bit(idx);
-
-
for (;;) {
-
-
/* Skip rest of block if there are no more set bits in this block. */
-
if (bit > map || bit == 0) {
-
do {
-
if (++block >= BINMAPSIZE) /* out of bins */
-
goto use_top;
-
} while ( (map = av->binmap[block]) == 0);
-
-
bin = bin_at(av, (block << BINMAPSHIFT));
-
bit = 1;
-
}
-
-
/* Advance to bin with set bit. There must be one. */
-
while ((bit & map) == 0) {
-
bin = next_bin(bin);
-
bit <<= 1;
-
assert(bit != 0);
-
}
-
-
/* Inspect the bin. It is likely to be non-empty */
-
victim = last(bin);
-
-
/* If a false alarm (empty bin), clear the bit. */
-
if (victim == bin) {
-
av->binmap[block] = map &= ~bit; /* Write through */
-
bin = next_bin(bin);
-
bit <<= 1;
-
}
-
-
else {
-
size = chunksize(victim);
-
-
/* We know the first chunk in this bin is big enough to use. */
-
assert((unsigned long)(size) >= (unsigned long)(nb));
-
-
remainder_size = size - nb;
-
-
/* unlink */
-
unlink(victim, bck, fwd);
-
-
/* Exhaust */
-
if (remainder_size < MINSIZE) {
-
set_inuse_bit_at_offset(victim, size);
-
if (av != &main_arena)
-
victim->size |= NON_MAIN_ARENA;
-
}
-
-
/* Split */
-
else {
-
remainder = chunk_at_offset(victim, nb);
-
-
/* We cannot assume the unsorted list is empty and therefore
-
have to perform a complete insert here. */
-
bck = unsorted_chunks(av);
-
fwd = bck->fd;
-
if (__builtin_expect (fwd->bk != bck, 0))
-
{
-
errstr = "malloc(): corrupted unsorted chunks 2";
-
goto errout;
-
}
-
remainder->bk = bck;
-
remainder->fd = fwd;
-
bck->fd = remainder;
-
fwd->bk = remainder;
-
-
/* advertise as last remainder */
-
if (in_smallbin_range(nb))
-
av->last_remainder = remainder;
-
if (!in_smallbin_range(remainder_size))
-
{
-
remainder->fd_nextsize = NULL;
-
remainder->bk_nextsize = NULL;
-
}
-
set_head(victim, nb | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE);
-
set_foot(remainder, remainder_size);
-
}
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
-
use_top:
-
/*
-
If large enough, split off the chunk bordering the end of memory
-
(held in av->top). Note that this is in accord with the best-fit
-
search rule. In effect, av->top is treated as larger (and thus
-
less well fitting) than any other available chunk since it can
-
be extended to be as large as necessary (up to system
-
limitations).
-
-
We require that av->top always exists (i.e., has size >=
-
MINSIZE) after initialization, so if it would otherwise be
-
exhausted by current request, it is replenished. (The main
-
reason for ensuring it exists is that we may need MINSIZE space
-
to put in fenceposts in sysmalloc.)
-
*/
-
-
victim = av->top;
-
size = chunksize(victim);
-
-
if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
-
remainder_size = size - nb;
-
remainder = chunk_at_offset(victim, nb);
-
av->top = remainder;
-
set_head(victim, nb | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE);
-
-
check_malloced_chunk(av, victim, nb);
-
void *p = chunk2mem(victim);
-
if (__builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
-
#ifdef ATOMIC_FASTBINS
-
/* When we are using atomic ops to free fast chunks we can get
-
here for all block sizes. */
-
else if (have_fastchunks(av)) {
-
malloc_consolidate(av);
-
/* restore original bin index */
-
if (in_smallbin_range(nb))
-
idx = smallbin_index(nb);
-
else
-
idx = largebin_index(nb);
-
}
-
#else
-
/*
-
If there is space available in fastbins, consolidate and retry,
-
to possibly avoid expanding memory. This can occur only if nb is
-
in smallbin range so we didn't consolidate upon entry.
-
*/
-
-
else if (have_fastchunks(av)) {
-
assert(in_smallbin_range(nb));
-
malloc_consolidate(av);
-
idx = smallbin_index(nb); /* restore original bin index */
-
}
-
#endif
-
-
/*
-
Otherwise, relay to handle system-dependent cases
-
*/
-
else {
-
void *p = sYSMALLOc(nb, av);
-
if (p != NULL && __builtin_expect (perturb_byte, 0))
-
alloc_perturb (p, bytes);
-
return p;
-
}
-
}
-
}
-
-
/*
-
------------------------------ free ------------------------------
-
*/
-
-
static void
-
#ifdef ATOMIC_FASTBINS
-
_int_free(mstate av, mchunkptr p, int have_lock)
-
#else
-
_int_free(mstate av, mchunkptr p)
-
#endif
-
{
-
INTERNAL_SIZE_T size; /* its size */
-
mfastbinptr* fb; /* associated fastbin */
-
mchunkptr nextchunk; /* next contiguous chunk */
-
INTERNAL_SIZE_T nextsize; /* its size */
-
int nextinuse; /* true if nextchunk is used */
-
INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
-
mchunkptr bck; /* misc temp for linking */
-
mchunkptr fwd; /* misc temp for linking */
-
-
const char *errstr = NULL;
-
#ifdef ATOMIC_FASTBINS
-
int locked = 0;
-
#endif
-
-
size = chunksize(p);
-
-
/* Little security check which won't hurt performance: the
-
allocator never wrapps around at the end of the address space.
-
Therefore we can exclude some size values which might appear
-
here by accident or by "design" from some intruder. */
-
if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
-
|| __builtin_expect (misaligned_chunk (p), 0))
-
{
-
errstr = "free(): invalid pointer";
-
errout:
-
#ifdef ATOMIC_FASTBINS
-
if (! have_lock && locked)
-
(void)mutex_unlock(&av->mutex);
-
#endif
-
malloc_printerr (check_action, errstr, chunk2mem(p));
-
return;
-
}
-
/* We know that each chunk is at least MINSIZE bytes in size. */
-
if (__builtin_expect (size < MINSIZE, 0))
-
{
-
errstr = "free(): invalid size";
-
goto errout;
-
}
-
-
check_inuse_chunk(av, p);
-
-
/*
-
If eligible, place chunk on a fastbin so it can be found
-
and used quickly in malloc.
-
*/
-
-
if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
-
-
#if TRIM_FASTBINS
-
/*
-
If TRIM_FASTBINS set, don't place chunks
-
bordering top into fastbins
-
*/
-
&& (chunk_at_offset(p, size) != av->top)
-
#endif
-
) {
-
-
if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
-
|| __builtin_expect (chunksize (chunk_at_offset (p, size))
-
>= av->system_mem, 0))
-
{
-
#ifdef ATOMIC_FASTBINS
-
/* We might not have a lock at this point and concurrent modifications
-
of system_mem might have let to a false positive. Redo the test
-
after getting the lock. */
-
if (have_lock
-
|| ({ assert (locked == 0);
-
mutex_lock(&av->mutex);
-
locked = 1;
-
chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
-
|| chunksize (chunk_at_offset (p, size)) >= av->system_mem;
-
}))
-
#endif
-
{
-
errstr = "free(): invalid next size (fast)";
-
goto errout;
-
}
-
#ifdef ATOMIC_FASTBINS
-
if (! have_lock)
-
{
-
(void)mutex_unlock(&av->mutex);
-
locked = 0;
-
}
-
#endif
-
}
-
-
if (__builtin_expect (perturb_byte, 0))
-
free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
-
-
set_fastchunks(av);
-
unsigned int idx = fastbin_index(size);
-
fb = &fastbin (av, idx);
-
-
#ifdef ATOMIC_FASTBINS
-
mchunkptr fd;
-
mchunkptr old = *fb;
-
unsigned int old_idx = ~0u;
-
do
-
{
-
/* Another simple check: make sure the top of the bin is not the
-
record we are going to add (i.e., double free). */
-
if (__builtin_expect (old == p, 0))
-
{
-
errstr = "double free or corruption (fasttop)";
-
goto errout;
-
}
-
if (old != NULL)
-
old_idx = fastbin_index(chunksize(old));
-
p->fd = fd = old;
-
}
-
while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
-
-
if (fd != NULL && __builtin_expect (old_idx != idx, 0))
-
{
-
errstr = "invalid fastbin entry (free)";
-
goto errout;
-
}
-
#else
-
/* Another simple check: make sure the top of the bin is not the
-
record we are going to add (i.e., double free). */
-
if (__builtin_expect (*fb == p, 0))
-
{
-
errstr = "double free or corruption (fasttop)";
-
goto errout;
-
}
-
if (*fb != NULL
-
&& __builtin_expect (fastbin_index(chunksize(*fb)) != idx, 0))
-
{
-
errstr = "invalid fastbin entry (free)";
-
goto errout;
-
}
-
-
p->fd = *fb;
-
*fb = p;
-
#endif
-
}
-
-
/*
-
Consolidate other non-mmapped chunks as they arrive.
-
*/
-
-
else if (!chunk_is_mmapped(p)) {
-
#ifdef ATOMIC_FASTBINS
-
if (! have_lock) {
-
# if THREAD_STATS
-
if(!mutex_trylock(&av->mutex))
-
++(av->stat_lock_direct);
-
else {
-
(void)mutex_lock(&av->mutex);
-
++(av->stat_lock_wait);
-
}
-
# else
-
(void)mutex_lock(&av->mutex);
-
# endif
-
locked = 1;
-
}
-
#endif
-
-
nextchunk = chunk_at_offset(p, size);
-
-
/* Lightweight tests: check whether the block is already the
-
top block. */
-
if (__builtin_expect (p == av->top, 0))
-
{
-
errstr = "double free or corruption (top)";
-
goto errout;
-
}
-
/* Or whether the next chunk is beyond the boundaries of the arena. */
-
if (__builtin_expect (contiguous (av)
-
&& (char *) nextchunk
-
>= ((char *) av->top + chunksize(av->top)), 0))
-
{
-
errstr = "double free or corruption (out)";
-
goto errout;
-
}
-
/* Or whether the block is actually not marked used. */
-
if (__builtin_expect (!prev_inuse(nextchunk), 0))
-
{
-
errstr = "double free or corruption (!prev)";
-
goto errout;
-
}
-
-
nextsize = chunksize(nextchunk);
-
if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
-
|| __builtin_expect (nextsize >= av->system_mem, 0))
-
{
-
errstr = "free(): invalid next size (normal)";
-
goto errout;
-
}
-
-
if (__builtin_expect (perturb_byte, 0))
-
free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
-
-
/* consolidate backward */
-
if (!prev_inuse(p)) {
-
prevsize = p->prev_size;
-
size += prevsize;
-
p = chunk_at_offset(p, -((long) prevsize));
-
unlink(p, bck, fwd);
-
}
-
-
if (nextchunk != av->top) {
-
/* get and clear inuse bit */
-
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-
-
/* consolidate forward */
-
if (!nextinuse) {
-
unlink(nextchunk, bck, fwd);
-
size += nextsize;
-
} else
-
clear_inuse_bit_at_offset(nextchunk, 0);
-
-
/*
-
Place the chunk in unsorted chunk list. Chunks are
-
not placed into regular bins until after they have
-
been given one chance to be used in malloc.
-
*/
-
-
bck = unsorted_chunks(av);
-
fwd = bck->fd;
-
if (__builtin_expect (fwd->bk != bck, 0))
-
{
-
errstr = "free(): corrupted unsorted chunks";
-
goto errout;
-
}
-
p->fd = fwd;
-
p->bk = bck;
-
if (!in_smallbin_range(size))
-
{
-
p->fd_nextsize = NULL;
-
p->bk_nextsize = NULL;
-
}
-
bck->fd = p;
-
fwd->bk = p;
-
-
set_head(p, size | PREV_INUSE);
-
set_foot(p, size);
-
-
check_free_chunk(av, p);
-
}
-
-
/*
-
If the chunk borders the current high end of memory,
-
consolidate into top
-
*/
-
-
else {
-
size += nextsize;
-
set_head(p, size | PREV_INUSE);
-
av->top = p;
-
check_chunk(av, p);
-
}
-
-
/*
-
If freeing a large space, consolidate possibly-surrounding
-
chunks. Then, if the total unused topmost memory exceeds trim
-
threshold, ask malloc_trim to reduce top.
-
-
Unless max_fast is 0, we don't know if there are fastbins
-
bordering top, so we cannot tell for sure whether threshold
-
has been reached unless fastbins are consolidated. But we
-
don't want to consolidate on each free. As a compromise,
-
consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
-
is reached.
-
*/
-
-
if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
-
if (have_fastchunks(av))
-
malloc_consolidate(av);
-
-
if (av == &main_arena) {
-
#ifndef MORECORE_CANNOT_TRIM
-
if ((unsigned long)(chunksize(av->top)) >=
-
(unsigned long)(mp_.trim_threshold))
-
sYSTRIm(mp_.top_pad, av);
-
#endif
-
} else {
-
/* Always try heap_trim(), even if the top chunk is not
-
large, because the corresponding heap might go away. */
-
heap_info *heap = heap_for_ptr(top(av));
-
-
assert(heap->ar_ptr == av);
-
heap_trim(heap, mp_.top_pad);
-
}
-
}
-
-
#ifdef ATOMIC_FASTBINS
-
if (! have_lock) {
-
assert (locked);
-
(void)mutex_unlock(&av->mutex);
-
}
-
#endif
-
}
-
/*
-
If the chunk was allocated via mmap, release via munmap(). Note
-
that if HAVE_MMAP is false but chunk_is_mmapped is true, then
-
user must have overwritten memory. There's nothing we can do to
-
catch this error unless MALLOC_DEBUG is set, in which case
-
check_inuse_chunk (above) will have triggered error.
-
*/
-
-
else {
-
#if HAVE_MMAP
-
munmap_chunk (p);
-
#endif
-
}
-
}
-
-
/*
-
------------------------- malloc_consolidate -------------------------
-
-
malloc_consolidate is a specialized version of free() that tears
-
down chunks held in fastbins. Free itself cannot be used for this
-
purpose since, among other things, it might place chunks back onto
-
fastbins. So, instead, we need to use a minor variant of the same
-
code.
-
-
Also, because this routine needs to be called the first time through
-
malloc anyway, it turns out to be the perfect place to trigger
-
initialization code.
-
*/
-
-
#if __STD_C
-
static void malloc_consolidate(mstate av)
-
#else
-
static void malloc_consolidate(av) mstate av;
-
#endif
-
{
-
mfastbinptr* fb; /* current fastbin being consolidated */
-
mfastbinptr* maxfb; /* last fastbin (for loop control) */
-
mchunkptr p; /* current chunk being consolidated */
-
mchunkptr nextp; /* next chunk to consolidate */
-
mchunkptr unsorted_bin; /* bin header */
-
mchunkptr first_unsorted; /* chunk to link to */
-
-
/* These have same use as in free() */
-
mchunkptr nextchunk;
-
INTERNAL_SIZE_T size;
-
INTERNAL_SIZE_T nextsize;
-
INTERNAL_SIZE_T prevsize;
-
int nextinuse;
-
mchunkptr bck;
-
mchunkptr fwd;
-
-
/*
-
If max_fast is 0, we know that av hasn't
-
yet been initialized, in which case do so below
-
*/
-
-
if (get_max_fast () != 0) {
-
clear_fastchunks(av);
-
-
unsorted_bin = unsorted_chunks(av);
-
-
/*
-
Remove each chunk from fast bin and consolidate it, placing it
-
then in unsorted bin. Among other reasons for doing this,
-
placing in unsorted bin avoids needing to calculate actual bins
-
until malloc is sure that chunks aren't immediately going to be
-
reused anyway.
-
*/
-
-
#if 0
-
/* It is wrong to limit the fast bins to search using get_max_fast
-
because, except for the main arena, all the others might have
-
blocks in the high fast bins. It's not worth it anyway, just
-
search all bins all the time. */
-
maxfb = &fastbin (av, fastbin_index(get_max_fast ()));
-
#else
-
maxfb = &fastbin (av, NFASTBINS - 1);
-
#endif
-
fb = &fastbin (av, 0);
-
do {
-
#ifdef ATOMIC_FASTBINS
-
p = atomic_exchange_acq (fb, 0);
-
#else
-
p = *fb;
-
#endif
-
if (p != 0) {
-
#ifndef ATOMIC_FASTBINS
-
*fb = 0;
-
#endif
-
do {
-
check_inuse_chunk(av, p);
-
nextp = p->fd;
-
-
/* Slightly streamlined version of consolidation code in free() */
-
size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
-
nextchunk = chunk_at_offset(p, size);
-
nextsize = chunksize(nextchunk);
-
-
if (!prev_inuse(p)) {
-
prevsize = p->prev_size;
-
size += prevsize;
-
p = chunk_at_offset(p, -((long) prevsize));
-
unlink(p, bck, fwd);
-
}
-
-
if (nextchunk != av->top) {
-
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-
-
if (!nextinuse) {
-
size += nextsize;
-
unlink(nextchunk, bck, fwd);
-
} else
-
clear_inuse_bit_at_offset(nextchunk, 0);
-
-
first_unsorted = unsorted_bin->fd;
-
unsorted_bin->fd = p;
-
first_unsorted->bk = p;
-
-
if (!in_smallbin_range (size)) {
-
p->fd_nextsize = NULL;
-
p->bk_nextsize = NULL;
-
}
-
-
set_head(p, size | PREV_INUSE);
-
p->bk = unsorted_bin;
-
p->fd = first_unsorted;
-
set_foot(p, size);
-
}
-
-
else {
-
size += nextsize;
-
set_head(p, size | PREV_INUSE);
-
av->top = p;
-
}
-
-
} while ( (p = nextp) != 0);
-
-
}
-
} while (fb++ != maxfb);
-
}
-
else {
-
malloc_init_state(av);
-
check_malloc_state(av);
-
}
-
}
-
-
/*
-
------------------------------ realloc ------------------------------
-
*/
-
-
Void_t*
-
_int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
-
INTERNAL_SIZE_T nb)
-
{
-
mchunkptr newp; /* chunk to return */
-
INTERNAL_SIZE_T newsize; /* its size */
-
Void_t* newmem; /* corresponding user mem */
-
-
mchunkptr next; /* next contiguous chunk after oldp */
-
-
mchunkptr remainder; /* extra space at end of newp */
-
unsigned long remainder_size; /* its size */
-
-
mchunkptr bck; /* misc temp for linking */
-
mchunkptr fwd; /* misc temp for linking */
-
-
unsigned long copysize; /* bytes to copy */
-
unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
-
INTERNAL_SIZE_T* s; /* copy source */
-
INTERNAL_SIZE_T* d; /* copy destination */
-
-
const char *errstr = NULL;
-
-
/* oldmem size */
-
if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
-
|| __builtin_expect (oldsize >= av->system_mem, 0))
-
{
-
errstr = "realloc(): invalid old size";
-
errout:
-
malloc_printerr (check_action, errstr, chunk2mem(oldp));
-
return NULL;
-
}
-
-
check_inuse_chunk(av, oldp);
-
-
/* All callers already filter out mmap'ed chunks. */
-
#if 0
-
if (!chunk_is_mmapped(oldp))
-
#else
-
assert (!chunk_is_mmapped(oldp));
-
#endif
-
{
-
-
next = chunk_at_offset(oldp, oldsize);
-
INTERNAL_SIZE_T nextsize = chunksize(next);
-
if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
-
|| __builtin_expect (nextsize >= av->system_mem, 0))
-
{
-
errstr = "realloc(): invalid next size";
-
goto errout;
-
}
-
-
if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
-
/* already big enough; split below */
-
newp = oldp;
-
newsize = oldsize;
-
}
-
-
else {
-
/* Try to expand forward into top */
-
if (next == av->top &&
-
(unsigned long)(newsize = oldsize + nextsize) >=
-
(unsigned long)(nb + MINSIZE)) {
-
set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
-
av->top = chunk_at_offset(oldp, nb);
-
set_head(av->top, (newsize - nb) | PREV_INUSE);
-
check_inuse_chunk(av, oldp);
-
return chunk2mem(oldp);
-
}
-
-
/* Try to expand forward into next chunk; split off remainder below */
-
else if (next != av->top &&
-
!inuse(next) &&
-
(unsigned long)(newsize = oldsize + nextsize) >=
-
(unsigned long)(nb)) {
-
newp = oldp;
-
unlink(next, bck, fwd);
-
}
-
-
/* allocate, copy, free */
-
else {
-
newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
-
if (newmem == 0)
-
return 0; /* propagate failure */
-
-
newp = mem2chunk(newmem);
-
newsize = chunksize(newp);
-
-
/*
-
Avoid copy if newp is next chunk after oldp.
-
*/
-
if (newp == next) {
-
newsize += oldsize;
-
newp = oldp;
-
}
-
else {
-
/*
-
Unroll copy of <= 36 bytes (72 if 8byte sizes)
-
We know that contents have an odd number of
-
INTERNAL_SIZE_T-sized words; minimally 3.
-
*/
-
-
copysize = oldsize - SIZE_SZ;
-
s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
-
d = (INTERNAL_SIZE_T*)(newmem);
-
ncopies = copysize / sizeof(INTERNAL_SIZE_T);
-
assert(ncopies >= 3);
-
-
if (ncopies > 9)
-
MALLOC_COPY(d, s, copysize);
-
-
else {
-
*(d+0) = *(s+0);
-
*(d+1) = *(s+1);
-
*(d+2) = *(s+2);
-
if (ncopies > 4) {
-
*(d+3) = *(s+3);
-
*(d+4) = *(s+4);
-
if (ncopies > 6) {
-
*(d+5) = *(s+5);
-
*(d+6) = *(s+6);
-
if (ncopies > 8) {
-
*(d+7) = *(s+7);
-
*(d+8) = *(s+8);
-
}
-
}
-
}
-
}
-
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, oldp, 1);
-
#else
-
_int_free(av, oldp);
-
#endif
-
check_inuse_chunk(av, newp);
-
return chunk2mem(newp);
-
}
-
}
-
}
-
-
/* If possible, free extra space in old or extended chunk */
-
-
assert((unsigned long)(newsize) >= (unsigned long)(nb));
-
-
remainder_size = newsize - nb;
-
-
if (remainder_size < MINSIZE) { /* not enough extra to split off */
-
set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_inuse_bit_at_offset(newp, newsize);
-
}
-
else { /* split remainder */
-
remainder = chunk_at_offset(newp, nb);
-
set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head(remainder, remainder_size | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
/* Mark remainder as inuse so free() won't complain */
-
set_inuse_bit_at_offset(remainder, remainder_size);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, remainder, 1);
-
#else
-
_int_free(av, remainder);
-
#endif
-
}
-
-
check_inuse_chunk(av, newp);
-
return chunk2mem(newp);
-
}
-
-
#if 0
-
/*
-
Handle mmap cases
-
*/
-
-
else {
-
#if HAVE_MMAP
-
-
#if HAVE_MREMAP
-
INTERNAL_SIZE_T offset = oldp->prev_size;
-
size_t pagemask = mp_.pagesize - 1;
-
char *cp;
-
unsigned long sum;
-
-
/* Note the extra SIZE_SZ overhead */
-
newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
-
-
/* don't need to remap if still within same page */
-
if (oldsize == newsize - offset)
-
return chunk2mem(oldp);
-
-
cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
-
-
if (cp != MAP_FAILED) {
-
-
newp = (mchunkptr)(cp + offset);
-
set_head(newp, (newsize - offset)|IS_MMAPPED);
-
-
assert(aligned_OK(chunk2mem(newp)));
-
assert((newp->prev_size == offset));
-
-
/* update statistics */
-
sum = mp_.mmapped_mem += newsize - oldsize;
-
if (sum > (unsigned long)(mp_.max_mmapped_mem))
-
mp_.max_mmapped_mem = sum;
-
#ifdef NO_THREADS
-
sum += main_arena.system_mem;
-
if (sum > (unsigned long)(mp_.max_total_mem))
-
mp_.max_total_mem = sum;
-
#endif
-
-
return chunk2mem(newp);
-
}
-
#endif
-
-
/* Note the extra SIZE_SZ overhead. */
-
if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
-
newmem = chunk2mem(oldp); /* do nothing */
-
else {
-
/* Must alloc, copy, free. */
-
newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
-
if (newmem != 0) {
-
MALLOC_COPY(newmem, chunk2mem(oldp), oldsize - 2*SIZE_SZ);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, oldp, 1);
-
#else
-
_int_free(av, oldp);
-
#endif
-
}
-
}
-
return newmem;
-
-
#else
-
/* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
-
check_malloc_state(av);
-
MALLOC_FAILURE_ACTION;
-
return 0;
-
#endif
-
}
-
#endif
-
}
-
-
/*
-
------------------------------ memalign ------------------------------
-
*/
-
-
static Void_t*
-
_int_memalign(mstate av, size_t alignment, size_t bytes)
-
{
-
INTERNAL_SIZE_T nb; /* padded request size */
-
char* m; /* memory returned by malloc call */
-
mchunkptr p; /* corresponding chunk */
-
char* brk; /* alignment point within p */
-
mchunkptr newp; /* chunk to return */
-
INTERNAL_SIZE_T newsize; /* its size */
-
INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
-
mchunkptr remainder; /* spare room at end to split off */
-
unsigned long remainder_size; /* its size */
-
INTERNAL_SIZE_T size;
-
-
/* If need less alignment than we give anyway, just relay to malloc */
-
-
if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
-
-
/* Otherwise, ensure that it is at least a minimum chunk size */
-
-
if (alignment < MINSIZE) alignment = MINSIZE;
-
-
/* Make sure alignment is power of 2 (in case MINSIZE is not). */
-
if ((alignment & (alignment - 1)) != 0) {
-
size_t a = MALLOC_ALIGNMENT * 2;
-
while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
-
alignment = a;
-
}
-
-
checked_request2size(bytes, nb);
-
-
/*
-
Strategy: find a spot within that chunk that meets the alignment
-
request, and then possibly free the leading and trailing space.
-
*/
-
-
-
/* Call malloc with worst case padding to hit alignment. */
-
-
m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
-
-
if (m == 0) return 0; /* propagate failure */
-
-
p = mem2chunk(m);
-
-
if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
-
-
/*
-
Find an aligned spot inside chunk. Since we need to give back
-
leading space in a chunk of at least MINSIZE, if the first
-
calculation places us at a spot with less than MINSIZE leader,
-
we can move to the next aligned spot -- we've allocated enough
-
total room so that this is always possible.
-
*/
-
-
brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
-
-((signed long) alignment));
-
if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
-
brk += alignment;
-
-
newp = (mchunkptr)brk;
-
leadsize = brk - (char*)(p);
-
newsize = chunksize(p) - leadsize;
-
-
/* For mmapped chunks, just adjust offset */
-
if (chunk_is_mmapped(p)) {
-
newp->prev_size = p->prev_size + leadsize;
-
set_head(newp, newsize|IS_MMAPPED);
-
return chunk2mem(newp);
-
}
-
-
/* Otherwise, give back leader, use the rest */
-
set_head(newp, newsize | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_inuse_bit_at_offset(newp, newsize);
-
set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, p, 1);
-
#else
-
_int_free(av, p);
-
#endif
-
p = newp;
-
-
assert (newsize >= nb &&
-
(((unsigned long)(chunk2mem(p))) % alignment) == 0);
-
}
-
-
/* Also give back spare room at the end */
-
if (!chunk_is_mmapped(p)) {
-
size = chunksize(p);
-
if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
-
remainder_size = size - nb;
-
remainder = chunk_at_offset(p, nb);
-
set_head(remainder, remainder_size | PREV_INUSE |
-
(av != &main_arena ? NON_MAIN_ARENA : 0));
-
set_head_size(p, nb);
-
#ifdef ATOMIC_FASTBINS
-
_int_free(av, remainder, 1);
-
#else
-
_int_free(av, remainder);
-
#endif
-
}
-
}
-
-
check_inuse_chunk(av, p);
-
return chunk2mem(p);
-
}
-
-
#if 0
-
/*
-
------------------------------ calloc ------------------------------
-
*/
-
-
#if __STD_C
-
Void_t* cALLOc(size_t n_elements, size_t elem_size)
-
#else
-
Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
-
#endif
-
{
-
mchunkptr p;
-
unsigned long clearsize;
-
unsigned long nclears;
-
INTERNAL_SIZE_T* d;
-
-
Void_t* mem = mALLOc(n_elements * elem_size);
-
-
if (mem != 0) {
-
p = mem2chunk(mem);
-
-
#if MMAP_CLEARS
-
if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
-
#endif
-
{
-
/*
-
Unroll clear of <= 36 bytes (72 if 8byte sizes)
-
We know that contents have an odd number of
-
INTERNAL_SIZE_T-sized words; minimally 3.
-
*/
-
-
d = (INTERNAL_SIZE_T*)mem;
-
clearsize = chunksize(p) - SIZE_SZ;
-
nclears = clearsize / sizeof(INTERNAL_SIZE_T);
-
assert(nclears >= 3);
-
-
if (nclears > 9)
-
MALLOC_ZERO(d, clearsize);
-
-
else {
-
*(d+0) = 0;
-
*(d+1) = 0;
-
*(d+2) = 0;
-
if (nclears > 4) {
-
*(d+3) = 0;
-
*(d+4) = 0;
-
if (nclears > 6) {
-
*(d+5) = 0;
-
*(d+6) = 0;
-
if (nclears > 8) {
-
*(d+7) = 0;
-
*(d+8) = 0;
-
}
-
}
-
}
-
}
-
}
-
}
-
return mem;
-
}
-
#endif /* 0 */
-
-
#ifndef _LIBC
-
/*
-
------------------------- independent_calloc -------------------------
-
*/
-
-
Void_t**
-
#if __STD_C
-
_int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
-
#else
-
_int_icalloc(av, n_elements, elem_size, chunks)
-
mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
-
#endif
-
{
-
size_t sz = elem_size; /* serves as 1-element array */
-
/* opts arg of 3 means all elements are same size, and should be cleared */
-
return iALLOc(av, n_elements, &sz, 3, chunks);
-
}
-
-
/*
-
------------------------- independent_comalloc -------------------------
-
*/
-
-
Void_t**
-
#if __STD_C
-
_int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
-
#else
-
_int_icomalloc(av, n_elements, sizes, chunks)
-
mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
-
#endif
-
{
-
return iALLOc(av, n_elements, sizes, 0, chunks);
-
}
-
-
-
/*
-
------------------------------ ialloc ------------------------------
-
ialloc provides common support for independent_X routines, handling all of
-
the combinations that can result.
-
-
The opts arg has:
-
bit 0 set if all elements are same size (using sizes[0])
-
bit 1 set if elements should be zeroed
-
*/
-
-
-
static Void_t**
-
#if __STD_C
-
iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
-
#else
-
iALLOc(av, n_elements, sizes, opts, chunks)
-
mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
-
#endif
-
{
-
INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
-
INTERNAL_SIZE_T contents_size; /* total size of elements */
-
INTERNAL_SIZE_T array_size; /* request size of pointer array */
-
Void_t* mem; /* malloced aggregate space */
-
mchunkptr p; /* corresponding chunk */
-
INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
-
Void_t** marray; /* either "chunks" or malloced ptr array */
-
mchunkptr array_chunk; /* chunk for malloced ptr array */
-
int mmx; /* to disable mmap */
-
INTERNAL_SIZE_T size;
-
INTERNAL_SIZE_T size_flags;
-
size_t i;
-
-
/* Ensure initialization/consolidation */
-
if (have_fastchunks(av)) malloc_consolidate(av);
-
-
/* compute array length, if needed */
-
if (chunks != 0) {
-
if (n_elements == 0)
-
return chunks; /* nothing to do */
-
marray = chunks;
-
array_size = 0;
-
}
-
else {
-
/* if empty req, must still return chunk representing empty array */
-
if (n_elements == 0)
-
return (Void_t**) _int_malloc(av, 0);
-
marray = 0;
-
array_size = request2size(n_elements * (sizeof(Void_t*)));
-
}
-
-
/* compute total element size */
-
if (opts & 0x1) { /* all-same-size */
-
element_size = request2size(*sizes);
-
contents_size = n_elements * element_size;
-
}
-
else { /* add up all the sizes */
-
element_size = 0;
-
contents_size = 0;
-
for (i = 0; i != n_elements; ++i)
-
contents_size += request2size(sizes[i]);
-
}
-
-
/* subtract out alignment bytes from total to minimize overallocation */
-
size = contents_size + array_size - MALLOC_ALIGN_MASK;
-
-
/*
-
Allocate the aggregate chunk.
-
But first disable mmap so malloc won't use it, since
-
we would not be able to later free/realloc space internal
-
to a segregated mmap region.
-
*/
-
mmx = mp_.n_mmaps_max; /* disable mmap */
-
mp_.n_mmaps_max = 0;
-
mem = _int_malloc(av, size);
-
mp_.n_mmaps_max = mmx; /* reset mmap */
-
if (mem == 0)
-
return 0;
-
-
p = mem2chunk(mem);
-
assert(!chunk_is_mmapped(p));
-
remainder_size = chunksize(p);
-
-
if (opts & 0x2) { /* optionally clear the elements */
-
MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
-
}
-
-
size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
-
-
/* If not provided, allocate the pointer array as final part of chunk */
-
if (marray == 0) {
-
array_chunk = chunk_at_offset(p, contents_size);
-
marray = (Void_t**) (chunk2mem(array_chunk));
-
set_head(array_chunk, (remainder_size - contents_size) | size_flags);
-
remainder_size = contents_size;
-
}
-
-
/* split out elements */
-
for (i = 0; ; ++i) {
-
marray[i] = chunk2mem(p);
-
if (i != n_elements-1) {
-
if (element_size != 0)
-
size = element_size;
-
else
-
size = request2size(sizes[i]);
-
remainder_size -= size;
-
set_head(p, size | size_flags);
-
p = chunk_at_offset(p, size);
-
}
-
else { /* the final element absorbs any overallocation slop */
-
set_head(p, remainder_size | size_flags);
-
break;
-
}
-
}
-
-
#if MALLOC_DEBUG
-
if (marray != chunks) {
-
/* final element must have exactly exhausted chunk */
-
if (element_size != 0)
-
assert(remainder_size == element_size);
-
else
-
assert(remainder_size == request2size(sizes[i]));
-
check_inuse_chunk(av, mem2chunk(marray));
-
}
-
-
for (i = 0; i != n_elements; ++i)
-
check_inuse_chunk(av, mem2chunk(marray[i]));
-
#endif
-
-
return marray;
-
}
-
#endif /* _LIBC */
-
-
-
/*
-
------------------------------ valloc ------------------------------
-
*/
-
-
static Void_t*
-
#if __STD_C
-
_int_valloc(mstate av, size_t bytes)
-
#else
-
_int_valloc(av, bytes) mstate av; size_t bytes;
-
#endif
-
{
-
/* Ensure initialization/consolidation */
-
if (have_fastchunks(av)) malloc_consolidate(av);
-
return _int_memalign(av, mp_.pagesize, bytes);
-
}
-
-
/*
-
------------------------------ pvalloc ------------------------------
-
*/
-
-
-
static Void_t*
-
#if __STD_C
-
_int_pvalloc(mstate av, size_t bytes)
-
#else
-
_int_pvalloc(av, bytes) mstate av, size_t bytes;
-
#endif
-
{
-
size_t pagesz;
-
-
/* Ensure initialization/consolidation */
-
if (have_fastchunks(av)) malloc_consolidate(av);
-
pagesz = mp_.pagesize;
-
return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
-
}
-
-
-
/*
-
------------------------------ malloc_trim ------------------------------
-
*/
-
-
#if __STD_C
-
static int mTRIm(mstate av, size_t pad)
-
#else
-
static int mTRIm(av, pad) mstate av; size_t pad;
-
#endif
-
{
-
/* Ensure initialization/consolidation */
-
malloc_consolidate (av);
-
-
const size_t ps = mp_.pagesize;
-
int psindex = bin_index (ps);
-
const size_t psm1 = ps - 1;
-
-
int result = 0;
-
for (int i = 1; i < NBINS; ++i)
-
if (i == 1 || i >= psindex)
-
{
-
mbinptr bin = bin_at (av, i);
-
-
for (mchunkptr p = last (bin); p != bin; p = p->bk)
-
{
-
INTERNAL_SIZE_T size = chunksize (p);
-
-
if (size > psm1 + sizeof (struct malloc_chunk))
-
{
-
/* See whether the chunk contains at least one unused page. */
-
char *paligned_mem = (char *) (((uintptr_t) p
-
+ sizeof (struct malloc_chunk)
-
+ psm1) & ~psm1);
-
-
assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
-
assert ((char *) p + size > paligned_mem);
-
-
/* This is the size we could potentially free. */
-
size -= paligned_mem - (char *) p;
-
-
if (size > psm1)
-
{
-
#ifdef MALLOC_DEBUG
-
/* When debugging we simulate destroying the memory
-
content. */
-
memset (paligned_mem, 0x89, size & ~psm1);
-
#endif
-
madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
-
-
result = 1;
-
}
-
}
-
}
-
}
-
-
#ifndef MORECORE_CANNOT_TRIM
-
return result | (av == &main_arena ? sYSTRIm (pad, av) : 0);
-
#else
-
return result;
-
#endif
-
}
-
-
-
/*
-
------------------------- malloc_usable_size -------------------------
-
*/
-
-
#if __STD_C
-
size_t mUSABLe(Void_t* mem)
-
#else
-
size_t mUSABLe(mem) Void_t* mem;
-
#endif
-
{
-
mchunkptr p;
-
if (mem != 0) {
-
p = mem2chunk(mem);
-
if (chunk_is_mmapped(p))
-
return chunksize(p) - 2*SIZE_SZ;
-
else if (inuse(p))
-
return chunksize(p) - SIZE_SZ;
-
}
-
return 0;
-
}
-
-
/*
-
------------------------------ mallinfo ------------------------------
-
*/
-
-
struct mallinfo mALLINFo(mstate av)
-
{
-
struct mallinfo mi;
-
size_t i;
-
mbinptr b;
-
mchunkptr p;
-
INTERNAL_SIZE_T avail;
-
INTERNAL_SIZE_T fastavail;
-
int nblocks;
-
int nfastblocks;
-
-
/* Ensure initialization */
-
if (av->top == 0) malloc_consolidate(av);
-
-
check_malloc_state(av);
-
-
/* Account for top */
-
avail = chunksize(av->top);
-
nblocks = 1; /* top always exists */
-
-
/* traverse fastbins */
-
nfastblocks = 0;
-
fastavail = 0;
-
-
for (i = 0; i < NFASTBINS; ++i) {
-
for (p = fastbin (av, i); p != 0; p = p->fd) {
-
++nfastblocks;
-
fastavail += chunksize(p);
-
}
-
}
-
-
avail += fastavail;
-
-
/* traverse regular bins */
-
for (i = 1; i < NBINS; ++i) {
-
b = bin_at(av, i);
-
for (p = last(b); p != b; p = p->bk) {
-
++nblocks;
-
avail += chunksize(p);
-
}
-
}
-
-
mi.smblks = nfastblocks;
-
mi.ordblks = nblocks;
-
mi.fordblks = avail;
-
mi.uordblks = av->system_mem - avail;
-
mi.arena = av->system_mem;
-
mi.hblks = mp_.n_mmaps;
-
mi.hblkhd = mp_.mmapped_mem;
-
mi.fsmblks = fastavail;
-
mi.keepcost = chunksize(av->top);
-
mi.usmblks = mp_.max_total_mem;
-
return mi;
-
}
-
-
/*
-
------------------------------ malloc_stats ------------------------------
-
*/
-
-
void mSTATs()
-
{
-
int i;
-
mstate ar_ptr;
-
struct mallinfo mi;
-
unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
-
#if THREAD_STATS
-
long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
-
#endif
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
#ifdef _LIBC
-
_IO_flockfile (stderr);
-
int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
-
((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
-
#endif
-
for (i=0, ar_ptr = &main_arena;; i++) {
-
(void)mutex_lock(&ar_ptr->mutex);
-
mi = mALLINFo(ar_ptr);
-
fprintf(stderr, "Arena %d:\n", i);
-
fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
-
fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
-
#if MALLOC_DEBUG > 1
-
if (i > 0)
-
dump_heap(heap_for_ptr(top(ar_ptr)));
-
#endif
-
system_b += mi.arena;
-
in_use_b += mi.uordblks;
-
#if THREAD_STATS
-
stat_lock_direct += ar_ptr->stat_lock_direct;
-
stat_lock_loop += ar_ptr->stat_lock_loop;
-
stat_lock_wait += ar_ptr->stat_lock_wait;
-
#endif
-
(void)mutex_unlock(&ar_ptr->mutex);
-
ar_ptr = ar_ptr->next;
-
if(ar_ptr == &main_arena) break;
-
}
-
#if HAVE_MMAP
-
fprintf(stderr, "Total (incl. mmap):\n");
-
#else
-
fprintf(stderr, "Total:\n");
-
#endif
-
fprintf(stderr, "system bytes = %10u\n", system_b);
-
fprintf(stderr, "in use bytes = %10u\n", in_use_b);
-
#ifdef NO_THREADS
-
fprintf(stderr, "max system bytes = %10u\n", (unsigned int)mp_.max_total_mem);
-
#endif
-
#if HAVE_MMAP
-
fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
-
fprintf(stderr, "max mmap bytes = %10lu\n",
-
(unsigned long)mp_.max_mmapped_mem);
-
#endif
-
#if THREAD_STATS
-
fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
-
fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
-
fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
-
fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
-
fprintf(stderr, "locked total = %10ld\n",
-
stat_lock_direct + stat_lock_loop + stat_lock_wait);
-
#endif
-
#ifdef _LIBC
-
((_IO_FILE *) stderr)->_flags2 |= old_flags2;
-
_IO_funlockfile (stderr);
-
#endif
-
}
-
-
-
/*
-
------------------------------ mallopt ------------------------------
-
*/
-
-
#if __STD_C
-
int mALLOPt(int param_number, int value)
-
#else
-
int mALLOPt(param_number, value) int param_number; int value;
-
#endif
-
{
-
mstate av = &main_arena;
-
int res = 1;
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
(void)mutex_lock(&av->mutex);
-
/* Ensure initialization/consolidation */
-
malloc_consolidate(av);
-
-
switch(param_number) {
-
case M_MXFAST:
-
if (value >= 0 && value <= MAX_FAST_SIZE) {
-
set_max_fast(value);
-
}
-
else
-
res = 0;
-
break;
-
-
case M_TRIM_THRESHOLD:
-
mp_.trim_threshold = value;
-
mp_.no_dyn_threshold = 1;
-
break;
-
-
case M_TOP_PAD:
-
mp_.top_pad = value;
-
mp_.no_dyn_threshold = 1;
-
break;
-
-
case M_MMAP_THRESHOLD:
-
#if USE_ARENAS
-
/* Forbid setting the threshold too high. */
-
if((unsigned long)value > HEAP_MAX_SIZE/2)
-
res = 0;
-
else
-
#endif
-
mp_.mmap_threshold = value;
-
mp_.no_dyn_threshold = 1;
-
break;
-
-
case M_MMAP_MAX:
-
#if !HAVE_MMAP
-
if (value != 0)
-
res = 0;
-
else
-
#endif
-
mp_.n_mmaps_max = value;
-
mp_.no_dyn_threshold = 1;
-
break;
-
-
case M_CHECK_ACTION:
-
check_action = value;
-
break;
-
-
case M_PERTURB:
-
perturb_byte = value;
-
break;
-
-
#ifdef PER_THREAD
-
case M_ARENA_TEST:
-
if (value > 0)
-
mp_.arena_test = value;
-
break;
-
-
case M_ARENA_MAX:
-
if (value > 0)
-
mp_.arena_max = value;
-
break;
-
#endif
-
}
-
(void)mutex_unlock(&av->mutex);
-
return res;
-
}
-
-
-
/*
-
-------------------- Alternative MORECORE functions --------------------
-
*/
-
-
-
/*
-
General Requirements for MORECORE.
-
-
The MORECORE function must have the following properties:
-
-
If MORECORE_CONTIGUOUS is false:
-
-
* MORECORE must allocate in multiples of pagesize. It will
-
only be called with arguments that are multiples of pagesize.
-
-
* MORECORE(0) must return an address that is at least
-
MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
-
-
else (i.e. If MORECORE_CONTIGUOUS is true):
-
-
* Consecutive calls to MORECORE with positive arguments
-
return increasing addresses, indicating that space has been
-
contiguously extended.
-
-
* MORECORE need not allocate in multiples of pagesize.
-
Calls to MORECORE need not have args of multiples of pagesize.
-
-
* MORECORE need not page-align.
-
-
In either case:
-
-
* MORECORE may allocate more memory than requested. (Or even less,
-
but this will generally result in a malloc failure.)
-
-
* MORECORE must not allocate memory when given argument zero, but
-
instead return one past the end address of memory from previous
-
nonzero call. This malloc does NOT call MORECORE(0)
-
until at least one call with positive arguments is made, so
-
the initial value returned is not important.
-
-
* Even though consecutive calls to MORECORE need not return contiguous
-
addresses, it must be OK for malloc'ed chunks to span multiple
-
regions in those cases where they do happen to be contiguous.
-
-
* MORECORE need not handle negative arguments -- it may instead
-
just return MORECORE_FAILURE when given negative arguments.
-
Negative arguments are always multiples of pagesize. MORECORE
-
must not misinterpret negative args as large positive unsigned
-
args. You can suppress all such calls from even occurring by defining
-
MORECORE_CANNOT_TRIM,
-
-
There is some variation across systems about the type of the
-
argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
-
actually be size_t, because sbrk supports negative args, so it is
-
normally the signed type of the same width as size_t (sometimes
-
declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
-
matter though. Internally, we use "long" as arguments, which should
-
work across all reasonable possibilities.
-
-
Additionally, if MORECORE ever returns failure for a positive
-
request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
-
system allocator. This is a useful backup strategy for systems with
-
holes in address spaces -- in this case sbrk cannot contiguously
-
expand the heap, but mmap may be able to map noncontiguous space.
-
-
If you'd like mmap to ALWAYS be used, you can define MORECORE to be
-
a function that always returns MORECORE_FAILURE.
-
-
If you are using this malloc with something other than sbrk (or its
-
emulation) to supply memory regions, you probably want to set
-
MORECORE_CONTIGUOUS as false. As an example, here is a custom
-
allocator kindly contributed for pre-OSX macOS. It uses virtually
-
but not necessarily physically contiguous non-paged memory (locked
-
in, present and won't get swapped out). You can use it by
-
uncommenting this section, adding some #includes, and setting up the
-
appropriate defines above:
-
-
#define MORECORE osMoreCore
-
#define MORECORE_CONTIGUOUS 0
-
-
There is also a shutdown routine that should somehow be called for
-
cleanup upon program exit.
-
-
#define MAX_POOL_ENTRIES 100
-
#define MINIMUM_MORECORE_SIZE (64 * 1024)
-
static int next_os_pool;
-
void *our_os_pools[MAX_POOL_ENTRIES];
-
-
void *osMoreCore(int size)
-
{
-
void *ptr = 0;
-
static void *sbrk_top = 0;
-
-
if (size > 0)
-
{
-
if (size < MINIMUM_MORECORE_SIZE)
-
size = MINIMUM_MORECORE_SIZE;
-
if (CurrentExecutionLevel() == kTaskLevel)
-
ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
-
if (ptr == 0)
-
{
-
return (void *) MORECORE_FAILURE;
-
}
-
// save ptrs so they can be freed during cleanup
-
our_os_pools[next_os_pool] = ptr;
-
next_os_pool++;
-
ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
-
sbrk_top = (char *) ptr + size;
-
return ptr;
-
}
-
else if (size < 0)
-
{
-
// we don't currently support shrink behavior
-
return (void *) MORECORE_FAILURE;
-
}
-
else
-
{
-
return sbrk_top;
-
}
-
}
-
-
// cleanup any allocated memory pools
-
// called as last thing before shutting down driver
-
-
void osCleanupMem(void)
-
{
-
void **ptr;
-
-
for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
-
if (*ptr)
-
{
-
PoolDeallocate(*ptr);
-
*ptr = 0;
-
}
-
}
-
-
*/
-
-
-
/* Helper code. */
-
-
extern char **__libc_argv attribute_hidden;
-
-
static void
-
malloc_printerr(int action, const char *str, void *ptr)
-
{
-
if ((action & 5) == 5)
-
__libc_message (action & 2, "%s\n", str);
-
else if (action & 1)
-
{
-
char buf[2 * sizeof (uintptr_t) + 1];
-
-
buf[sizeof (buf) - 1] = '\0';
-
char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
-
while (cp > buf)
-
*--cp = '0';
-
-
__libc_message (action & 2,
-
"*** glibc detected *** %s: %s: 0x%s ***\n",
-
__libc_argv[0] ?: "<unknown>", str, cp);
-
}
-
else if (action & 2)
-
abort ();
-
}
-
-
#ifdef _LIBC
-
# include <sys/param.h>
-
-
/* We need a wrapper function for one of the additions of POSIX. */
-
int
-
__posix_memalign (void **memptr, size_t alignment, size_t size)
-
{
-
void *mem;
-
-
/* Test whether the SIZE argument is valid. It must be a power of
-
two multiple of sizeof (void *). */
-
if (alignment % sizeof (void *) != 0
-
|| !powerof2 (alignment / sizeof (void *)) != 0
-
|| alignment == 0)
-
return EINVAL;
-
-
/* Call the hook here, so that caller is posix_memalign's caller
-
and not posix_memalign itself. */
-
__malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
-
__const __malloc_ptr_t)) =
-
force_reg (__memalign_hook);
-
if (__builtin_expect (hook != NULL, 0))
-
mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
-
else
-
mem = public_mEMALIGn (alignment, size);
-
-
if (mem != NULL) {
-
*memptr = mem;
-
return 0;
-
}
-
-
return ENOMEM;
-
}
-
weak_alias (__posix_memalign, posix_memalign)
-
-
-
int
-
malloc_info (int options, FILE *fp)
-
{
-
/* For now, at least. */
-
if (options != 0)
-
return EINVAL;
-
-
int n = 0;
-
size_t total_nblocks = 0;
-
size_t total_nfastblocks = 0;
-
size_t total_avail = 0;
-
size_t total_fastavail = 0;
-
size_t total_system = 0;
-
size_t total_max_system = 0;
-
size_t total_aspace = 0;
-
size_t total_aspace_mprotect = 0;
-
-
void mi_arena (mstate ar_ptr)
-
{
-
fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
-
-
size_t nblocks = 0;
-
size_t nfastblocks = 0;
-
size_t avail = 0;
-
size_t fastavail = 0;
-
struct
-
{
-
size_t from;
-
size_t to;
-
size_t total;
-
size_t count;
-
} sizes[NFASTBINS + NBINS - 1];
-
#define nsizes (sizeof (sizes) / sizeof (sizes[0]))
-
-
mutex_lock (&ar_ptr->mutex);
-
-
for (size_t i = 0; i < NFASTBINS; ++i)
-
{
-
mchunkptr p = fastbin (ar_ptr, i);
-
if (p != NULL)
-
{
-
size_t nthissize = 0;
-
size_t thissize = chunksize (p);
-
-
while (p != NULL)
-
{
-
++nthissize;
-
p = p->fd;
-
}
-
-
fastavail += nthissize * thissize;
-
nfastblocks += nthissize;
-
sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
-
sizes[i].to = thissize;
-
sizes[i].count = nthissize;
-
}
-
else
-
sizes[i].from = sizes[i].to = sizes[i].count = 0;
-
-
sizes[i].total = sizes[i].count * sizes[i].to;
-
}
-
-
mbinptr bin = bin_at (ar_ptr, 1);
-
struct malloc_chunk *r = bin->fd;
-
if (r != NULL)
-
{
-
while (r != bin)
-
{
-
++sizes[NFASTBINS].count;
-
sizes[NFASTBINS].total += r->size;
-
sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
-
sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
-
r = r->fd;
-
}
-
nblocks += sizes[NFASTBINS].count;
-
avail += sizes[NFASTBINS].total;
-
}
-
-
for (size_t i = 2; i < NBINS; ++i)
-
{
-
bin = bin_at (ar_ptr, i);
-
r = bin->fd;
-
sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
-
sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
-
= sizes[NFASTBINS - 1 + i].count = 0;
-
-
if (r != NULL)
-
while (r != bin)
-
{
-
++sizes[NFASTBINS - 1 + i].count;
-
sizes[NFASTBINS - 1 + i].total += r->size;
-
sizes[NFASTBINS - 1 + i].from
-
= MIN (sizes[NFASTBINS - 1 + i].from, r->size);
-
sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
-
r->size);
-
-
r = r->fd;
-
}
-
-
if (sizes[NFASTBINS - 1 + i].count == 0)
-
sizes[NFASTBINS - 1 + i].from = 0;
-
nblocks += sizes[NFASTBINS - 1 + i].count;
-
avail += sizes[NFASTBINS - 1 + i].total;
-
}
-
-
mutex_unlock (&ar_ptr->mutex);
-
-
total_nfastblocks += nfastblocks;
-
total_fastavail += fastavail;
-
-
total_nblocks += nblocks;
-
total_avail += avail;
-
-
for (size_t i = 0; i < nsizes; ++i)
-
if (sizes[i].count != 0 && i != NFASTBINS)
-
fprintf (fp, "\
-
<size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
-
sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
-
-
if (sizes[NFASTBINS].count != 0)
-
fprintf (fp, "\
-
<unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
-
sizes[NFASTBINS].from, sizes[NFASTBINS].to,
-
sizes[NFASTBINS].total, sizes[NFASTBINS].count);
-
-
total_system += ar_ptr->system_mem;
-
total_max_system += ar_ptr->max_system_mem;
-
-
fprintf (fp,
-
"</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
-
"<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
-
"<system type=\"current\" size=\"%zu\"/>\n"
-
"<system type=\"max\" size=\"%zu\"/>\n",
-
nfastblocks, fastavail, nblocks, avail,
-
ar_ptr->system_mem, ar_ptr->max_system_mem);
-
-
if (ar_ptr != &main_arena)
-
{
-
heap_info *heap = heap_for_ptr(top(ar_ptr));
-
fprintf (fp,
-
"<aspace type=\"total\" size=\"%zu\"/>\n"
-
"<aspace type=\"mprotect\" size=\"%zu\"/>\n",
-
heap->size, heap->mprotect_size);
-
total_aspace += heap->size;
-
total_aspace_mprotect += heap->mprotect_size;
-
}
-
else
-
{
-
fprintf (fp,
-
"<aspace type=\"total\" size=\"%zu\"/>\n"
-
"<aspace type=\"mprotect\" size=\"%zu\"/>\n",
-
ar_ptr->system_mem, ar_ptr->system_mem);
-
total_aspace += ar_ptr->system_mem;
-
total_aspace_mprotect += ar_ptr->system_mem;
-
}
-
-
fputs ("</heap>\n", fp);
-
}
-
-
if(__malloc_initialized < 0)
-
ptmalloc_init ();
-
-
fputs ("<malloc version=\"1\">\n", fp);
-
-
/* Iterate over all arenas currently in use. */
-
mstate ar_ptr = &main_arena;
-
do
-
{
-
mi_arena (ar_ptr);
-
ar_ptr = ar_ptr->next;
-
}
-
while (ar_ptr != &main_arena);
-
-
fprintf (fp,
-
"<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
-
"<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
-
"<system type=\"current\" size=\"%zu\"/>\n"
-
"<system type=\"max\" size=\"%zu\"/>\n"
-
"<aspace type=\"total\" size=\"%zu\"/>\n"
-
"<aspace type=\"mprotect\" size=\"%zu\"/>\n"
-
"</malloc>\n",
-
total_nfastblocks, total_fastavail, total_nblocks, total_avail,
-
total_system, total_max_system,
-
total_aspace, total_aspace_mprotect);
-
-
return 0;
-
}
-
-
-
strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
-
strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
-
strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
-
strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
-
strong_alias (__libc_memalign, __memalign)
-
weak_alias (__libc_memalign, memalign)
-
strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
-
strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
-
strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
-
strong_alias (__libc_mallinfo, __mallinfo)
-
weak_alias (__libc_mallinfo, mallinfo)
-
strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
-
-
weak_alias (__malloc_stats, malloc_stats)
-
weak_alias (__malloc_usable_size, malloc_usable_size)
-
weak_alias (__malloc_trim, malloc_trim)
-
weak_alias (__malloc_get_state, malloc_get_state)
-
weak_alias (__malloc_set_state, malloc_set_state)
-
-
#endif /* _LIBC */
-
-
/* ------------------------------------------------------------
-
History:
-
-
[see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
-
-
*/
-
/*
-
* Local variables:
-
* c-basic-offset: 2
-
* End:
-
*/
阅读(3794) | 评论(0) | 转发(0) |