分类: LINUX
2009-05-20 19:23:13
在内核的学习中会遇到很多挺有意思的函数,而且能沿着一个函数扯出来很多个相关的函数。copy_to_user和copy_from_user就是在进行驱动相关程序设计的时候,要经常遇到的两个函数。由于内核空间与用户空间的内存不能直接互访,因此借助函数copy_to_user()完成用户空间到内核空间的复制,函数copy_from_user()完成内核空间到用户空间的复制。下面我们来仔细的理一下这两个函数的来龙去脉。
首先,我们来看一下这两个函数的在源码文件中是如何定义的:
~/arch/i386/lib/usercopy.c
unsigned long
copy_to_user(void __user *to, const void *from, unsigned long n)
{
might_sleep();
BUG_ON((long) n < 0);
if (access_ok(VERIFY_WRITE, to, n))
n = __copy_to_user(to, from, n);
return n;
}
EXPORT_SYMBOL(copy_to_user);
从注释中就可以看出,这个函数的主要作用就是从内核空间拷贝一块儿数据到用户空间,由于这个函数有可能睡眠,所以只能用于用户空间。它有如下三个参数,
To 目标地址,这个地址是用户空间的地址;
From 源地址,这个地址是内核空间的地址;
N 将要拷贝的数据的字节数。
如果数据拷贝成功,则返回零;否则,返回没有拷贝成功的数据字节数。
以上是对函数的一些说明,接下来让我们看看这个函数的内部面目:
参数to的时候有个__user限定,这个在~/include/linux/compiler.h中有如下定义:
# define
__user __attribute__((noderef,
address_space(1)))
表示这是一个用户空间的地址,即其指向的为用户空间的内存
大家可能对这个__attribute__感到比较迷惑,不过没关系,google一下嘛
__attribute__是gnu c编译器的一个功能,它用来让开发者使用此功能给所声明的函数或者变量附加一个属性,以方便编译器进行错误检查,其实就是一个内核检查器。
具体可以参考如下:
接下来我们看一下
might_sleep();它有两个实现版本,debug版本和非debug版本:
在debug版本中,在有可能引起sleep的函数中会给出相应的提示,如果是在原子的上下文中执行,则会打印出栈跟踪的信息,这是通过__might_sleep(__FILE__, __LINE__);函数来实现的,并且接着调用might_resched()函数进行重新调度。
在非debug版本中直接调用might_resched()函数进行重新调度。
其实现方式为,在~/ include/linux/kernel.h中:
#ifdef
CONFIG_DEBUG_SPINLOCK_SLEEP
void
__might_sleep(char *file, int line);
# define might_sleep() \
do
{ __might_sleep(__FILE__, __LINE__); might_resched(); } while (0)
#else
# define might_sleep() do {
might_resched(); } while (0)
#endif
接下来是一个检查参数合法性的宏:
BUG_ON((long) n < 0);
其实现为如下(在~/include/asm-generic/bug.h):
它通过检查条件,根据结果来决定是否打印相应的提示信息;
#ifdef CONFIG_BUG
#ifndef HAVE_ARCH_BUG
#define BUG() do { \
printk("BUG:
failure at %s:%d/%s()!\n", __FILE__, __LINE__, __FUNCTION__); \
panic("BUG!");
\
} while (0)
#endif
#ifndef HAVE_ARCH_BUG_ON
#define BUG_ON(condition) do { if
(unlikely((condition)!=0)) BUG(); } while(0)
#endif
接下来是一个宏
access_ok(VERIFY_WRITE, to, n)
它是用来检查参数中一个指向用户空间数据块的指针是否有效,如果有效返回非零,否则返回零。其实现如下(在/include/asm-i386/uaccess.h中):
#define access_ok(type,addr,size)
(likely(__range_ok(addr,size) == 0))
其中__range_ok(addr,size)的实现是通过内嵌汇编来实现的,内容如下(在/include/asm-i386/uaccess.h中):
#define __range_ok(addr,size) ({ \
unsigned long flag,sum; \
__chk_user_ptr(addr); \
asm("addl %3,%1 ; sbbl
%0,%0; cmpl %1,%4; sbbl $0,%0" \
:"=&r" (flag),
"=r" (sum) \
:"1"
(addr),"g" ((int)(size)),"g" (current_thread_info()->addr_limit.seg));
\
flag; })
其实现的功能为:
(u33)addr + (u33)size >= (u33)current->addr_limit.seg
判断上式是否成立,若不成立则表示地址有效,返回零;否则返回非零
接下来的这个函数才是最重要的函数,它实现了拷贝的工作:
__copy_to_user(to, from, n)
其实现方式如下(在/include/asm-i386/uaccess.h中):
static __always_inline unsigned
long __must_check
__copy_to_user(void __user *to,
const void *from, unsigned long n)
{
might_sleep();
return __copy_to_user_inatomic(to, from,
n);
}
有一个__always_inline宏,其内容就是inline,一个__must_check,其内容是在gcc3和gcc4版本里为__attribute__((warn_unused_result))
其中might_sleep同上面__user时候的注释。
最终调用的是__copy_to_user_inatomic(to, from,
n)来完成拷贝工作的,此函数的实现如下(在/include/asm-i386/uaccess.h中):
static __always_inline unsigned
long __must_check
__copy_to_user_inatomic(void
__user *to, const void *from, unsigned long n)
{
if
(__builtin_constant_p(n)) {
unsigned
long ret;
switch
(n) {
case
1:
__put_user_size(*(u8
*)from, (u8 __user *)to, 1, ret, 1);
return
ret;
case
2:
__put_user_size(*(u16
*)from, (u16 __user *)to, 2, ret, 2);
return
ret;
case
4:
__put_user_size(*(u32
*)from, (u32 __user *)to, 4, ret, 4);
return
ret;
}
}
return
__copy_to_user_ll(to, from, n);
}
其中__builtin_constant_p(n)为gcc的内建函数,__builtin_constant_p用于判断一个值是否为编译时常熟,如果参数n的值为常数,函数返回1,否则返回0。很多计算或操作在参数为常数时有更优化的实现,在 GNU C 中用上面的方法可以根据参数是否为常数,只编译常数版本或非常数版本,这样既不失通用性,又能在参数是常数时编译出最优化的代码。
如果n为常数1、2或者4,就会选择某个swith来执行拷贝动作,拷贝是通过如下函数来实现的(在/include/asm-i386/uaccess.h中):
#ifdef CONFIG_X86_WP_WORKS_OK
#define
__put_user_size(x,ptr,size,retval,errret) \
do { \
retval
= 0; \
__chk_user_ptr(ptr); \
switch
(size) { \
case
1:
__put_user_asm(x,ptr,retval,"b","b","iq",errret);break; \
case
2:
__put_user_asm(x,ptr,retval,"w","w","ir",errret);break;
\
case
4:
__put_user_asm(x,ptr,retval,"l","","ir",errret);
break; \
case
8: __put_user_u64((__typeof__(*ptr))(x),ptr,retval); break;\
default: __put_user_bad(); \
} \
} while (0)
#else
#define
__put_user_size(x,ptr,size,retval,errret) \
do { \
__typeof__(*(ptr))
__pus_tmp = x; \
retval
= 0; \
\
if(unlikely(__copy_to_user_ll(ptr,
&__pus_tmp, size) != 0)) \
retval = errret; \
} while
(0)
#endif
其中__put_user_asm为一个宏,拷贝工作是通过如下的内联汇编来实现的(在/include/asm-i386/uaccess.h中):
#define __put_user_asm(x, addr,
err, itype, rtype, ltype, errret) \
__asm__ __volatile__( \
"1: mov"itype"
%"rtype"1,%2\n" \
"2:\n" \
".section
.fixup,\"ax\"\n" \
"3: movl %3,%0\n" \
" jmp 2b\n" \
".previous\n" \
".section
__ex_table,\"a\"\n" \
" .align 4\n" \
" .long 1b,3b\n" \
".previous" \
:
"=r"(err) \
: ltype (x), "m"(__m(addr)), "i"(errret), "0"(err))
以上这两个函数是为了在拷贝小字节数据比如char/int等数据的时候考虑到效率来实现小数据拷贝。
而若n不是如上所说的常数,则进行数据块区域拷贝,其实现如下(~/arch/i386/lib/usercopy.c):
unsigned long __copy_to_user_ll(void __user *to, const void *from,
unsigned long n)
{
BUG_ON((long) n < 0);
#ifndef CONFIG_X86_WP_WORKS_OK
if (unlikely(boot_cpu_data.wp_works_ok
== 0) &&
((unsigned long )to) <
TASK_SIZE) {
/*
* CPU does not honor the WP bit when writing
* from supervisory mode, and due to preemption
or SMP,
* the page tables can change at any time.
* Do it manually. Manfred
*/
while (n) {
unsigned
long offset = ((unsigned long)to)%PAGE_SIZE;
unsigned long len =
PAGE_SIZE - offset;
int retval;
struct page *pg;
void *maddr;
if (len > n)
len = n;
survive:
down_read(¤t->mm->mmap_sem);
retval =
get_user_pages(current, current->mm,
(unsigned long
)to, 1, 1, 0, &pg, NULL);
if (retval == -ENOMEM
&& current->pid == 1) {
up_read(¤t->mm->mmap_sem);
blk_congestion_wait(WRITE,
HZ/50);
goto
survive;
}
if (retval != 1) {
up_read(¤t->mm->mmap_sem);
break;
}
maddr = kmap_atomic(pg,
KM_USER0);
memcpy(maddr + offset,
from, len);
kunmap_atomic(maddr,
KM_USER0);
set_page_dirty_lock(pg);
put_page(pg);
up_read(¤t->mm->mmap_sem);
from += len;
to += len;
n -= len;
}
return n;
}
#endif
if (movsl_is_ok(to, from, n))
__copy_user(to, from, n);
else
n = __copy_user_intel(to,
from, n);
return n;
}
EXPORT_SYMBOL(__copy_to_user_ll);
下面是copy_from_user函数的实现:
unsigned long
copy_from_user(void *to, const void __user *from, unsigned long n)
{
might_sleep();
BUG_ON((long) n < 0);
if (access_ok(VERIFY_READ, from, n))
n = __copy_from_user(to, from, n);
else
memset(to, 0, n);
return n;
}
EXPORT_SYMBOL(copy_from_user);
其实现方式与copy_to_user函数的实现方式类似:就不再累述了。
如上就是copy_to_user和copy_from_user两个函数的工作方式,这些进行简单的分析与跟踪。细节的部分还有待于进一步研究。