Chinaunix首页 | 论坛 | 博客
  • 博客访问: 920185
  • 博文数量: 132
  • 博客积分: 9976
  • 博客等级: 中将
  • 技术积分: 1781
  • 用 户 组: 普通用户
  • 注册时间: 2007-08-30 20:40
文章分类

全部博文(132)

文章存档

2013年(1)

2011年(1)

2010年(15)

2009年(77)

2008年(36)

2007年(2)

我的朋友

分类:

2009-03-30 14:52:20

i2c 协议介绍

==========================================================================
from:

I2C (Inter-Integrated Circuit) Bus Technical Overview and Frequently Asked Questions (FAQ)

by Axel Wolf, ESAcademy
   
In the early 1980's, Philips Semiconductors developed a simple bi-directional 2-wire bus for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. At present, Philips’ IC range includes more than 150 CMOS and bipolar I2C-bus compatible types for performing communication functions between intelligent control devices (e.g. microcontrollers), general-purpose circuits (e.g. LCD drivers, remote I/O ports, memories) and application-oriented circuits (e.g. digital tuning and signal processing circuits for radio and video systems).
All I2C-bus compatible devices incorporate an on-chip interface which allows them to communicate directly with each other via the I2C-bus. This design concept solves the many interfacing problems encountered when designing digital control circuits. I2C has become a de facto world standard that is now implemented in over 1000 different ICs and is licensed to more than 50 companies.

Contents
General Introduction

I2C Bus Events

Transmitting a byte to a slave device

Receiving a byte from a slave device

Getting Acknowledge from a slave device

Giving Acknowledge to a slave device

Frequently asked question section

Miscellaneous information


==========================================================================
from: general/i2cproto.htm

The I2C Bus Protocol

The I2C bus physically consists of 2 active wires and a ground connection. The active wires, called SDA and SCL, are both bi-directional. SDA is the Serial DAta line, and SCL is the Serial CLock line.

Every device hooked up to the bus has its own unique address, no matter whether it is an MCU, LCD driver, memory, or ASIC. Each of these chips can act as a receiver and/or transmitter, depending on the functionality. Obviously, an LCD driver is only a receiver, while a memory or I/O chip can be both transmitter and receiver.

The I2C bus is a multi-master bus. This means that more than one IC capable of initiating a data transfer can be connected to it. The I2C protocol specification states that the IC that initiates a data transfer on the bus is considered the Bus Master. Consequently, at that time, all the other ICs are regarded to be Bus Slaves.

As bus masters are generally microcontrollers, let's take a look at a general 'inter-IC chat' on the bus. Lets consider the following setup and assume the MCU wants to send data to one of its slaves (also see for more information; click for information on how to receive data from a slave).

First, the MCU will issue a condition. This acts as an 'Attention' signal to all of the connected devices. All ICs on the bus will listen to the bus for incoming data.

Then the MCU sends the of the device it wants to access, along with an indication whether the access is a Read or Write operation (Write in our example). Having received the address, all IC's will compare it with their own address. If it doesn't match, they simply wait until the bus is released by the stop condition (see below). If the address matches, however, the chip will produce a response called the signal.

Once the MCU receives the acknowledge, it can start transmitting or receiving DATA. In our case, the MCU will transmit data. When all is done, the MCU will issue the condition. This is a signal that the bus has been released and that the connected ICs may expect another transmission to start any moment.

We have had several states on the bus in our example: , , , DATA , . These are all unique conditions on the bus. Before we take a closer look at these bus conditions we need to understand a bit about the physical structure and hardware of the bus.


==========================================================================
from:

Introduction to I2C



An Inter-IC bus is often used to communicate across circuit-board distances. Here's a primer on the protocol.

At the low end of the spectrum of communication options for "inside the box" communication is I2C ("eye-squared-see"). The name I2C is shorthand for a standard Inter-IC (integrated circuit) bus.

I2C provides good support for communication with various slow, on-board peripheral devices that are accessed intermittently, while being extremely modest in its hardware resource needs. It is a simple, low-bandwidth, short-distance protocol. Most available I2C devices operate at speeds up to 400Kbps, with some venturing up into the low megahertz range. I2C is easy to use to link multiple devices together since it has a built-in addressing scheme.

Philips originally developed I2C for communication between devices inside of a TV set. Examples of simple I2C-compatible devices found in embedded systems include EEPROMs, thermal sensors, and real-time clocks. I2C is also used as a control interface to signal processing devices that have separate, application-specific data interfaces. For instance, it's commonly used in multimedia applications, where typical devices include RF tuners, video decoders and encoders, and audio processors. In all, Philips, National Semiconductor, Xicor, Siemens, and other manufacturers offer hundreds of I2C-compatible devices.

Inside the box

I2C is appropriate for interfacing to devices on a single board, and can be stretched across multiple boards inside a closed system, but not much further. An example is a host CPU on a main embedded board using I2C to communicate with user interface devices located on a separate front panel board. A second example is SDRAM DIMMs, which can feature an I2C EEPROM containing parameters needed to correctly configure a memory controller for that module.

I2C is a two-wire serial bus, as shown in Figure 1. There's no need for chip select or arbitration logic, making it cheap and simple to implement in hardware.

The two I2C signals are serial data (SDA) and serial clock (SCL). Together, these signals make it possible to support serial transmission of 8-bit bytes of data-7-bit device addresses plus control bits-over the two-wire serial bus. The device that initiates a transaction on the I2C bus is termed the master. The master normally controls the clock signal. A device being addressed by the master is called a slave.

In a bind, an I2C slave can hold off the master in the middle of a transaction using what's called clock stretching (the slave keeps SCL pulled low until it's ready to continue). Most I2C slave devices don't use this feature, but every master should support it.

The I2C protocol supports multiple masters, but most system designs include only one. There may be one or more slaves on the bus. Both masters and slaves can receive and transmit data bytes.

Each I2C-compatible hardware slave device comes with a predefined device address, the lower bits of which may be configurable at the board level. The master transmits the device address of the intended slave at the beginning of every transaction. Each slave is responsible for monitoring the bus and responding only to its own address. This addressing scheme limits the number of identical slave devices that can exist on an I2C bus without contention, with the limit set by the number of user-configurable address bits (typically two bits, allowing up to four identical devices).

Communication

As you can see in Figure 2, the master begins the communication by issuing the start condition (S). The master continues by sending a unique 7-bit slave device address, with the most significant bit (MSB) first. The eighth bit after the start, read/not-write (), specifies whether the slave is now to receive (0) or to transmit (1). This is followed by an ACK bit issued by the receiver, acknowledging receipt of the previous byte. Then the transmitter (slave or master, as indicated by the bit) transmits a byte of data starting with the MSB. At the end of the byte, the receiver (whether master or slave) issues a new ACK bit. This 9-bit pattern is repeated if more bytes need to be transmitted.

In a write transaction (slave receiving), when the master is done transmitting all of the data bytes it wants to send, it monitors the last ACK and then issues the stop condition (P). In a read transaction (slave transmitting), the master does not acknowledge the final byte it receives. This tells the slave that its transmission is done. The master then issues the stop condition.

A simple bus

As we've seen, the I2C signaling protocol provides device addressing, a read/write flag, and a simple acknowledgement mechanism. There are a few more elements to the I2C protocol, such as general call (broadcast) and 10-bit extended addressing. Beyond that, each device defines its own command interface or address-indexing scheme.

Standard I2C devices operate up to 100Kbps, while fast-mode devices operate at up to 400Kbps. A 1998 revision of the I2C specification (v. 2.0) added a high-speed mode running at up to 3.4Mbps. Most of the I2C devices available today support 400Kbps operation. Higher-speed operation may allow I2C to keep up with the rising demand for bandwidth in multimedia and other applications.

Most often, the I2C master is the CPU or microcontroller in the system. Some microcontrollers even feature hardware to implement the I2C protocol. You can also build an all-software implementation using a pair of general-purpose I/O pins (single master implementations only).

Since the I2C master controls transaction timing, the bus protocol doesn't impose any real-time constraints on the CPU beyond those of the application. (This is in contrast with other serial buses that are timeslot-based and, therefore, take their service overhead even when no real communication is taking place.)

The elegance of I2C

I2C offers good support for communication with on-board devices that are accessed on an occasional basis. I2C's competitive advantage over other low-speed short-distance communication schemes is that its cost and complexity don't scale up with the number of devices on the bus. On the other hand, the complexity of the supporting I2C software components can be significantly higher than that of several competing schemes (SPI and MicroWire, to name two) in a very simple configuration. With its built-in addressing scheme and straightforward means to transfer strings of bytes, I2C is an elegant, minimalist solution for modest, "inside the box" communication needs.

David Kalinsky is director of customer education at OSE Systems. Earlier in his career, he was involved in the design of many medical and aerospace systems. David holds a PhD in nuclear physics from Yale and can be reached by e-mail at .

Roee Kalinsky is a senior design engineer at QuantumThink Group. He has designed numerous embedded systems including networking, multimedia, and hand-held products. Roee holds a BSEE from the University of California at San Diego. He can be reached by e-mail at .

Resources

For more recent information on the Inter IC bus, go to

1. Willey, H. Michael. "," Embedded Systems Programming, January 2001, p. 59.

2. Sarns, Steven and Jack Woehr. "Exploring I2C," Embedded Systems Programming, September 1991, p. 46.

3. Philips' web site for I2C:


==========================================================================
from:

 Using the I2C Bus 

Judging from my emails, it is quite clear that the I2C bus can be very confusing for the newcomer. I have lots of examples on using the I2C bus on the website, but many of these are using high level controllers and do not show the detail of what is actually happening on the bus. This short article therefore tries to de-mystify the I2C bus, I hope it doesn't have the opposite effect!

The physical I2C bus
This is just two wires, called SCL and SDA. SCL is the clock line. It is used to synchronize all data transfers over the I2C bus. SDA is the data line. The SCL & SDA lines are connected to all devices on the I2C bus. There needs to be a third wire which is just the ground or 0 volts. There may also be a 5volt wire is power is being distributed to the devices. Both SCL and SDA lines are "open drain" drivers. What this means is that the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide pull-up resistors to the 5v supply. There should be a resistor from the SCL line to the 5v line and another from the SDA line to the 5v line. You only need one set of pull-up resistors for the whole I2C bus, not for each device, as illustrated below:

The value of the resistors is not critical. I have seen anything from 1k8 (1800 ohms) to 47k (47000 ohms) used. 1k8, 4k7 and 10k are common values, but anything in this range should work OK. I recommend 1k8 as this gives you the best performance. If the resistors are missing, the SCL and SDA lines will always be low - nearly 0 volts - and the I2C bus will not work.

Masters and Slaves
The devices on the I2C bus are either masters or slaves. The master is always the device that drives the SCL clock line. The slaves are the devices that respond to the master. A slave cannot initiate a transfer over the I2C bus, only a master can do that. There can be, and usually are, multiple slaves on the I2C bus, however there is normally only one master. It is possible to have multiple masters, but it is unusual and not covered here. On your robot, the master will be your controller and the slaves will be our modules such as the SRF08 or CMPS03. Slaves will never initiate a transfer. Both master and slave can transfer data over the I2C bus, but that transfer is always controlled by the master.

The I2C Physical Protocol
When the master (your controller) wishes to talk to a slave (our CMPS03 for example) it begins by issuing a start sequence on the I2C bus. A start sequence is one of two special sequences defined for the I2C bus, the other being the stop sequence. The start sequence and stop sequence are special in that these are the only places where the SDA (data line) is allowed to change while the SCL (clock line) is high. When data is being transferred, SDA must remain stable and not change whilst SCL is high. The start and stop sequences mark the beginning and end of a transaction with the slave device.

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with the MSB (Most Significant Bit). The SCL line is then pulsed high, then low. Remember that the chip cannot really drive the line high, it simply "lets go" of it and the resistor actually pulls it high. For every 8 bits transferred, the device receiving the data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each 8 bit byte of data. If the receiving device sends back a low ACK bit, then it has received the data and is ready to accept another byte. If it sends back a high then it is indicating it cannot accept any further data and the master should terminate the transfer by sending a stop sequence. 

How fast?
The standard clock (SCL) speed for I2C up to 100KHz. Philips do define faster speeds: Fast mode, which is up to 400KHz and High Speed mode which is up to 3.4MHz. All of our modules are designed to work at up to 100KHz. We have tested our modules up to 1MHz but this needs a small delay of a few uS between each byte transferred. In practical robots, we have never had any need to use high SCL speeds. Keep SCL at or below 100KHz and then forget about it.

I2C Device Addressing
All I2C addresses are either 7 bits or 10 bits. The use of 10 bit addresses is rare and is not covered here. All of our modules and the common chips you will use will have 7 bit addresses. This means that you can have up to 128 devices on the I2C bus, since a 7bit number can be from 0 to 127. When sending out the 7 bit address, we still always send 8 bits. The extra bit is used to inform the slave if the master is  writing to it or reading from it. If the bit is zero are master is writing to the slave. If the bit is 1 the master is reading from the slave. The 7 bit address is placed in the upper 7 bits of the byte and the Read/Write (R/W) bit is in the LSB (Least Significant Bit).

The placement of the 7 bit address in the upper 7 bits of the byte is a source of confusion for the newcomer. It means that to write to address 21, you must actually send out 42 which is 21 moved over by 1 bit. It is probably easier to think of the I2C bus addresses as 8 bit addresses, with even addresses as write only, and the odd addresses as the read address for the same device. To take our CMPS03 for example, this is at address 0xC0 ($C0). You would uses 0xC0 to write to the CMPS03 and 0xC1 to read from it. So the read/write bit just makes it an odd/even address. 

The I2C Software Protocol
The first thing that will happen is that the master will send out a start sequence. This will alert all the slave devices on the bus that a transaction is starting and they should listen in incase it is for them. Next the master will send out the device address. The slave that matches this address will continue with the transaction, any others will ignore the rest of this transaction and wait for the next. Having addressed the slave device the master must now send out the internal location or register number inside the slave that it wishes to write to or read from. This number is obviously dependant on what the slave actually is and how many internal registers it has. Some very simple devices do not have any, but most do, including all of our modules. Our CMPS03 has 16 locations numbered 0-15. The SRF08 has 36. Having sent the I2C address and the internal register address  the master can now send the data byte (or bytes, it doesn't have to be just one). The master can continue to send data bytes to the slave and these will normally be placed in the following registers because the slave will automatically increment the internal register address after each byte. When the master has finished writing all data to the slave, it sends a stop sequence which completes the transaction. So to write to a slave device: 
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to write to
4. Send the data byte
5. [Optionally, send any further data bytes]
6. Send the stop sequence.

As an example, you have an SRF08 at the factory default address of 0xE0. To start the SRF08 ranging you would write 0x51 to the command register at 0x00 like this:
1. Send a start sequence
2. Send 0xE0 ( I2C address of the SRF08 with the R/W bit low (even address)
3. Send 0x00 (Internal address of the command register)
4. Send 0x51 (The command to start the SRF08 ranging)
5. Send the stop sequence.

Reading from the Slave
This is a little more complicated - but not too much more. Before reading data from the slave device, you must tell it which of its internal addresses you want to read. So a read of the slave actually starts off by writing to it. This is the same as when you want to write to it: You send the start sequence, the I2C address of the slave with the R/W bit low (even address) and the internal register number you want to write to. Now you send another start sequence (sometimes called a restart) and the I2C address again - this time with the read bit set. You then read as many data bytes as you wish and terminate the transaction with a stop sequence. So to read the compass bearing as a byte from the CMPS03 module:
1. Send a start sequence
2. Send 0xC0 ( I2C address of the CMPS03 with the R/W bit low (even address)
3. Send 0x01 (Internal address of the bearing register)
4. Send a start sequence again (repeated start)
5. Send 0xC1 ( I2C address of the CMPS03 with the R/W bit high (odd address)
6. Read data byte from CMPS03
7. Send the stop sequence.

The bit sequence will look like this:

Wait a moment
That's almost it for simple I2C communications, but there is one more complication. When the master is reading from the slave, its the slave that places the data on the SDA line, but its the master that controls the clock. What if the slave is not ready to send the data! With devices such as EEPROMs this is not a problem, but when the slave device is actually a microprocessor with other things to do, it can be a problem. The microprocessor on the slave device will need to go to an interrupt routine, save its working registers, find out what address the master wants to read from, get the data and place it in its transmission register. This can take many uS to happen, meanwhile the master is blissfully sending out clock pulses on the SCL line that the slave cannot respond to. The I2C protocol provides a solution to this: the slave is allowed to hold the SCL line low! This is called clock stretching. When the slave gets the read command from the master it holds the clock line low. The microprocessor then gets the requested data, places it in the transmission register and releases the clock line allowing the pull-up resistor to finally pull it high. From the masters point of view, it will issue the first clock pulse of the read by making SCL high and then check to see if it really has gone high. If its still low then its the slave that holding it low and the master should wait until it goes high before continuing. Luckily the hardware I2C ports on most microprocessors will handle this automatically.

Sometimes however, the master I2C is just a collection of subroutines and there are a few implementations out there that completely ignore clock stretching. They work with things like EEPROM's but not with microprocessor slaves that use clock stretching. The result is that erroneous data is read from the slave. Beware!

Example Master Code
This example shows how to implement a software I2C master, including clock stretching. It is written in C for the PIC processor, but should be applicable to most processors with minor changes to the I/O pin definitions. It is suitable for controlling all of our I2C based robot modules. Since the SCL and SDA lines are open drain type, we use the tristate control register to control the output, keeping the output register low. The port pins still need to be read though, so they're defined as SCL_IN and SDA_IN. This definition and the initialization is probably all you'll need to change for a different processor.

#define SCL     TRISB4 // I2C bus
#define SDA     TRISB1 //
#define SCL_IN  RB4    //
#define SDA_IN  RB1    //

To initialize the ports set the output resisters to 0 and the tristate registers to 1 which disables the outputs and allows them to be pulled high by the resistors.
SDA = SCL = 1;
SCL_IN = SDA_IN = 0;

We use a small delay routine between SDA and SCL changes to give a clear sequence on the I2C bus. This is nothing more than a subroutine call and return.
void i2c_dly(void)
{
}

The following 4 functions provide the primitive start, stop, read and write sequences. All I2C transactions can be built up from these.
void i2c_start(void)
{
  SDA = 1;             // i2c start bit sequence
  i2c_dly();
  SCL = 1;
  i2c_dly();
  SDA = 0;
  i2c_dly();
  SCL = 0;
  i2c_dly();
}

void i2c_stop(void)
{
  SDA = 0;             // i2c stop bit sequence
  i2c_dly();
  SCL = 1;
  i2c_dly();
  SDA = 1;
  i2c_dly();
}

unsigned char i2c_rx(char ack)
{
char x, d=0;
  SDA = 1; 
  for(x=0; x<8; x++) {
    d <<= 1;
    do {
      SCL = 1;
    }
    while(SCL_IN==0);    // wait for any SCL clock stretching
    i2c_dly();
    if(SDA_IN) d |= 1;
    SCL = 0;
  } 
  if(ack) SDA = 0;
  else SDA = 1;
  SCL = 1;
  i2c_dly();             // send (N)ACK bit
  SCL = 0;
  SDA = 1;
  return d;
}

bit i2c_tx(unsigned char d)
{
char x;
static bit b;
  for(x=8; x; x--) {
    if(d&0x80) SDA = 1;
    else SDA = 0;
    SCL = 1;
    d <<= 1;
    SCL = 0;
  }
  SDA = 1;
  SCL = 1;
  i2c_dly();
  b = SDA_IN;          // possible ACK bit
  SCL = 0;
  return b;
}

The 4 primitive functions above can easily be put together to form complete I2C transactions. Here's and example to start an SRF08 ranging in cm:

i2c_start();              // send start sequence
i2c_tx(0xE0);             // SRF08 I2C address with R/W bit clear

i2c_tx(0x00);             // SRF08 command register address
i2c_tx(0x51);             // command to start ranging in cm
i2c_stop();               // send stop sequence

Now after waiting 65mS for the ranging to complete (I've left that to you) the following example shows how to read the light sensor value from register 1 and the range result from registers 2 & 3.

i2c_start();              // send start sequence
i2c_tx(0xE0);             // SRF08 I2C address with R/W bit clear

i2c_tx(0x01);             // SRF08 light sensor register address
i2c_start();              // send a restart sequence
i2c_tx(0xE1);             // SRF08 I2C address with R/W bit set

lightsensor = i2c_rx(1);  // get light sensor and send acknowledge. Internal register address will increment automatically.
rangehigh = i2c_rx(1);    // get the high byte of the range and send acknowledge.
rangelow = i2c_rx(0);     // get low byte of the range - note we don't acknowledge the last byte.
i2c_stop();               // send stop sequence

Easy isn't it?

The definitive specs on the I2C bus can be found on the Philips website. It currently but if its moved you'll find it easily be googleing on "i2c bus specification".

==========================================================================




阅读(2191) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~