1.实验目的
学会驱动程序的编写方法,配置S3C2410的LCD驱动,以及在LCD屏上显示包括bmp和jpeg两种格式的图片
2.实验内容
(1)分析S3c2410实验箱LCD以及LCD控制器的硬件原理,据此找出相应的硬件设置参数,参考xcale实验箱关于lcd的设置,完成s3c2410实验箱LCD的设置
(2)在LCD上显示一张BMP图片或JPEG图片
3.实验条件(软硬件环境)
PC机、S3C2410开发板、PXA255开发板
二 实验原理
1. S3C2410内置LCD控制器分析
1.1 S3C2410 LCD控制器
一 块LCD屏显示图像,不但需要LCD驱动器,还需要有相应的LCD控制器。通常LCD驱动器会以COF/COG的形式与LCD 玻璃基板制作在一起,而LCD控制器则由外部电路来实现。而S3C2410内部已经集成了LCD控制器,因此可以很方便地去控制各种类型的LCD屏,例 如:STN和TFT屏。S3C2410 LCD控制器的特性如下:
(1)STN屏
支持3种扫描方式:4bit单扫、4位双扫和8位单扫
支持单色、4级灰度和16级灰度屏
支持256色和4096色彩色STN屏(CSTN)
支持分辩率为640*480、320*240、160*160以及其它规格的多种LCD
(2)TFT屏
支持单色、4级灰度、256色的调色板显示模式
支持64K和16M色非调色板显示模式
支持分辩率为640*480,320*240及其它多种规格的LCD
对于控制TFT屏来说,除了要给它送视频资料(VD[23:0])以外,还有以下一些信号是必不可少的,分别是:
VSYNC(VFRAME) :帧同步信号
HSYNC(VLINE) :行同步信号
VCLK :像数时钟信号
VDEN(VM) :数据有效标志信号
由于本项目所用的S3C2410上的LCD是TFT屏,并且TFT屏将是今后应用的主流,因此接下来,重点围绕TFT屏的控制来进行。
图1.1是S3C2410内部的LCD控制器的逻辑示意图:
图1.1
REGBANK 是LCD控制器的寄存器组,用来对LCD控制器的各项参数进行设置。而 LCDCDMA 则是LCD控制器专用的DMA信道,负责将视频资料从系统总线(System Bus)上取来,通过 VIDPRCS 从VD[23:0]发送给LCD屏。同时 TIMEGEN 和 LPC3600 负责产生 LCD屏所需要的控制时序,例如VSYNC、HSYNC、VCLK、VDEN,然后从 VIDEO MUX 送给LCD屏。
1.2 TFT屏时序分析
图 1.2是TFT屏的典型时序。其中VSYNC是帧同步信号,VSYNC每发出1个脉冲,都意味着新的1屏视频资料开始发送。而HSYNC为行同步信号,每 个HSYNC脉冲都表明新的1行视频资料开始发送。而VDEN则用来标明视频资料的有效,VCLK是用来锁存视频资料的像数时钟。
并且在帧同步以 及行同步的头尾都必须留有回扫时间,例如对于VSYNC来说前回扫时间就是(VSPW+1)+(VBPD+1),后回扫时间就是(VFPD +1);HSYNC亦类同。这样的时序要求是当初CRT显示器由于电子枪偏转需要时间,但后来成了实际上的工业标准,乃至于后来出现的TFT屏为了在时序 上于CRT兼容,也采用了这样的控制时序。
图1.2
S3C2410实验箱上的LCD是一款3.5寸TFT真彩LCD屏,分辩率为240*320,下图为该屏的时序要求。
图1.3
通过对比图1.2和图1.3,我们不难看出:
VSPW+1=2 -> VSPW=1
VBPD+1=2 -> VBPD=1
LINVAL+1=320-> LINVAL=319
VFPD+1=3 -> VFPD=2
HSPW+1=4 -> HSPW=3
HBPD+1=7 -> HBPW=6
HOZVAL+1=240-> HOZVAL=239
HFPD+1=31 -> HFPD=30
以上各参数,除了LINVAL和HOZVAL直接和屏的分辩率有关,其它的参数在实际操作过程中应以上面的为参考,不应偏差太多。
1.3 LCD控制器主要寄存器功能详解
图1.4
LINECNT :当前行扫描计数器值,标明当前扫描到了多少行。
CLKVAL :决定VCLK的分频比。LCD控制器输出的VCLK是直接由系统总线(AHB)的工作频率HCLK直接分频得到的。做为240*320的TFT屏,应保证得出的VCLK在5~10MHz之间。
MMODE :VM信号的触发模式(仅对STN屏有效,对TFT屏无意义)。
PNRMODE :选择当前的显示模式,对于TFT屏而言,应选择[11],即TFT LCD panel。
BPPMODE :选择色彩模式,对于真彩显示而言,选择16bpp(64K色)即可满足要求。
ENVID :使能LCD信号输出。
图1.5
VBPD , LINEVAL , VFPD , VSPW 的各项含义已经在前面的时序图中得到体现。
图1.6
HBPD , HOZVAL , HFPD 的各项含义已经在前面的时序图中得到体现。
图1.7
HSPW 的含义已经在前面的时序图中得到体现。
MVAL 只对 STN屏有效,对TFT屏无意义。
HSPW 的含义已经在前面的时序图中得到体现,这里不再赘述。
MVAL 只对 STN屏有效,对TFT屏无意义。
图1.8
VSTATUS :当前VSYNC信号扫描状态,指明当前VSYNC同步信号处于何种扫描阶段。
HSTATUS :当前HSYNC信号扫描状态,指明当前HSYNC同步信号处于何种扫描阶段。
BPP24BL :设定24bpp显示模式时,视频资料在显示缓冲区中的排列顺序(即低位有效还是高位有效)。对于16bpp的64K色显示模式,该设置位无意义。
FRM565 :对于16bpp显示模式,有2中形式,一种是RGB=5:5:5:1,另一种是5:6:5。后一种模式最为常用,它的含义是表示64K种色彩的16bit RGB资料中,红色(R)占了5bit,绿色(G)占了6bit,兰色(B)占了5bit
INVVCLK , INVLINE , INVFRAME , INVVD :通过前面的时序图,我们知道,CPU的LCD控制器输出的时序默认是正脉冲,而LCD需要VSYNC(VFRAME)、VLINE(HSYNC)均为负 脉冲,因此 INVLINE 和 INVFRAME 必须设为“1 ”,即选择反相输出。
INVVDEN , INVPWREN , INVLEND 的功能同前面的类似。
PWREN 为LCD电源使能控制。在CPU LCD控制器的输出信号中,有一个电源使能管脚LCD_PWREN,用来做为LCD屏电源的开关信号。
ENLEND 对普通的TFT屏无效,可以不考虑。
BSWP 和 HWSWP 为字节(Byte)或半字(Half-Word)交换使能。由于不同的GUI对FrameBuffer(显示缓冲区)的管理不同,必要时需要通过调整 BSWP 和 HWSWP 来适应GUI。
2. Linux 驱动
2.1 FrameBuffer
Linux 是工作在保护模式下,所以用户态进程是无法像DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Lin仿显卡的功能,将显ux抽象出 FrameBuffer这个设备来供用户态进程实现直接写屏。Framebuffer机制模卡硬件结构抽象掉,可以通过Framebuffer的读写直接 对显存进行操作。用户可以将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反 应在屏幕上。这种操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由Framebuffer设备驱动来完成的。
在 Linux系统下,FrameBuffer的主要的结构如图所示。Linux为了开发FrameBuffer程序的方便,使用了分层结构。fbmem.c 处于Framebuffer设备驱动技术的中心位置。它为上层应用程序提供系统调用,也为下一层的特定硬件驱动提供接口;那些底层硬件驱动需要用到这儿的 接口来向系统内核注册它们自己。
fbmem.c 为所有支持FrameBuffer的设备驱动提供了通用的接口,避免重复工作。下将介绍fbmem.c主要的一些数据结构。
2.2 数据结构
2.2.1 Linux FrameBuffer的数据结构
在FrameBuffer中,fb_info可以说是最重要的一个结构体,它是Linux为帧缓冲设备定义的驱动层接口。它不仅包含了底层函数,而且还有记录设备状态的数据。每个帧缓冲设备都与一个fb_info结构相对应。fb_info的主要成员如下
struct fb_info {
int node;
struct fb_var_screeninfo var; /* Current var */
struct fb_fix_screeninfo fix; /* Current fix */
struct fb_videomode *mode; /* current mode */
struct fb_ops *fbops;
struct device *device; /* This is the parent */
struct device *dev; /* This is this fb device */
char __iomem *screen_base; /* Virtual address */
unsigned long screen_size; /* Amount of ioremapped VRAM or 0 */
…………
};
其 中node成员域标示了特定的FrameBuffer,实际上也就是一个FrameBuffer设备的次设备号。fb_var_screeninfo结构 体成员记录用户可修改的显示控制器参数,包括屏幕分辨率和每个像素点的比特数。fb_var_screeninfo中的xres定义屏幕一行有多少个点, yres定义屏幕一列有多少个点, bits_per_pixel定义每个点用多少个字节表示。其他域见以下代码注释。
struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
__u32 xoffset; /* offset from virtual to visible */
__u32 yoffset; /* resolution */
__u32 bits_per_pixel; /* bits/pixel */
__u32 pixclock; /* pixel clock in ps (pico seconds) */
__u32 left_margin; /* time from sync to picture */
__u32 right_margin; /* time from picture to sync */
__u32 hsync_len; /* length of horizontal sync */
__u32 vsync_len; /* length of vertical sync */
…………
};
在fb_info结构体中,fb_fix_screeninfo中记录用户不能修改的显示控制器的参数,如屏幕缓冲区的物理地址,长度。当对帧缓冲设备进行映射操作的时候,就是从fb_fix_screeninfo中取得缓冲区物理地址的。
struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT Builtin" */
unsigned long smem_start; /* Start of frame buffer mem (physical address) */
__u32 smem_len; /* Length of frame buffer mem */
unsigned long mmio_start; /* Start of Mem Mapped I/O(physical address) */
__u32 mmio_len; /* Length of Memory Mapped I/O */
…………
};
fb_info 还有一个很重要的域就是fb_ops。它是提供给底层设备驱动的一个接口。通常我们编写字符驱动的时候,要填写一个file_operations结构 体,并使用register_chrdev()注册之,以告诉Linux如何操控驱动。当我们编写一个FrameBuffer的时候,就要依照Linux FrameBuffer编程的套路,填写fb_ops结构体。这个fb_ops也就相当于通常的file_operations结构体。
struct fb_ops {
int (*fb_open)(struct fb_info *info, int user);
int (*fb_release)(struct fb_info *info, int user);
ssize_t (*fb_read)(struct file *file, char __user *buf, size_t count, loff_t *ppos);
ssize_t (*fb_write)(struct file *file, const char __user *buf, size_t count,
loff_t *ppos);
int (*fb_set_par)(struct fb_info *info);
int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp, struct fb_info *info);
int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info)
int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);
……………
}
上面的结构体,根据函数的名字就可以看出它的作用,这里不在一一说明。下图给出了Linux FrameBuffer的总体结构,作为这一部分的总结。
图2.2
2.2.2 S3C2410中LCD的数据结构
在S3C2410的LCD设备驱动中,定义了s3c2410fb_info来标识一个LCD设备,结构体如下:
struct s3c2410fb_info {
struct fb_info *fb;
struct device *dev;
struct s3c2410fb_mach_info *mach_info;
struct s3c2410fb_hw regs; /* LCD Hardware Regs */
dma_addr_t map_dma; /* physical */
u_char * map_cpu; /* virtual */
u_int map_size;
/* addresses of pieces placed in raw buffer */
u_char * screen_cpu; /* virtual address of buffer */
dma_addr_t screen_dma; /* physical address of buffer */
…………
};
成 员变量fb指向我们上面所说明的fb_info结构体,代表了一个FrameBuffer。dev则表示了这个LCD设备。 map_dma,map_cpu,map_size这三个域向了开辟给LCD DMA使用的内存地址。screen_cpu,screen_dma指向了LCD控制器映射的内存地址。另外regs标识了LCD控制器的寄存器。
struct s3c2410fb_hw {
unsigned long lcdcon1;
unsigned long lcdcon2;
unsigned long lcdcon3;
unsigned long lcdcon4;
unsigned long lcdcon5;
};
这个寄存器和硬件的寄存器一一对应,主要作为实际寄存器的映像,以便程序使用。
这个s3c2410fb_info中还有一个s3c2410fb_mach_info成员域。它存放了和体系结构相关的一些信息,如时钟、LCD设备的GPIO口等等。这个结构体定义为
struct s3c2410fb_mach_info {
unsigned char fixed_syncs; /* do not update sync/border */
int type; /* LCD types */
int width; /* Screen size */
int height;
struct s3c2410fb_val xres; /* Screen info */
struct s3c2410fb_val yres;
struct s3c2410fb_val bpp;
struct s3c2410fb_hw regs; /* lcd configuration registers */
/* GPIOs */
unsigned long gpcup;
unsigned long gpcup_mask;
unsigned long gpccon;
unsigned long gpccon_mask;
…………
};
图2.3
上图表示了S3C2410驱动的整体结构,反映了结构体之间的相互关系
2.3 主要代码结构以及关键代码分析
2.3.1 FrameBuffer驱动的统一管理
fbmem.c 实现了Linux FrameBuffer的中间层,任何一个FrameBuffer驱动,在系统初始化时,必须向fbmem.c注册,即需要调用 register_framebuffer()函数,在这个过程中,设备驱动的信息将会存放入名称为registered_fb数组中,这个数组定义为
struct fb_info *registered_fb[FB_MAX];
int num_registered_fb;
它是类型为fb_info的数组,另外num_register_fb则存放了注册过的设备数量。
我们分析一下register_framebuffer的代码。
int register_framebuffer(struct fb_info *fb_info)
{
int i;
struct fb_event event;
struct fb_videomode mode;
if (num_registered_fb == FB_MAX) return -ENXIO; /* 超过最大数量 */
num_registered_fb++;
for (i = 0 ; i < FB_MAX; i++)
if (!registered_fb[i]) break; /* 找到空余的数组空间 */
fb_info->node = i;
fb_info->dev = device_create(fb_class, fb_info->device,
MKDEV(FB_MAJOR, i), "fb%d", i); /* 为设备建立设备节点 */
if (IS_ERR(fb_info->dev)) {
…………
} else{
fb_init_device(fb_info); /* 初始化改设备 */
}
…………
return 0;
}
从 上面的代码可知,当FrameBuffer驱动进行注册的时候,它将驱动的fb_info结构体记录到全局数组registered_fb中,并动态建立 设备节点,进行设备的初始化。注意,这里建立的设备节点的次设备号就是该驱动信息在registered_fb存放的位置,即数组下标i 。在完成注册之后,fbmem.c就记录了驱动的fb_info。这样我们就有可能实现fbmem.c对全部FrameBuffer驱动的统一处理。
2.3.2 实现消息的分派
fbmem.c实现了对系统全部FrameBuffer设备的统一管理。当用户尝试使用一个特定的FrameBuffer时,fbmem.c怎么知道该调用那个特定的设备驱动呢?
我 们知道,Linux是通过主设备号和次设备号,对设备进行唯一标识。不同的FrameBuffer设备向fbmem.c注册时,程序分配给它们的主设备号 是一样的,而次设备号是不一样的。于是我们就可以通过用户指明的次设备号,来觉得具体该调用哪一个FrameBuffer驱动。下面通过分析 fbmem.c的fb_open()函数来说明。(注:一般我们写FrameBuffer驱动不需要实现open函数,这里只是说明函数流程。)
static int fb_open(struct inode *inode, struct file *file){
int fbidx = iminor(inode);
struct fb_info *info;
int res;
/* 得到真正驱动的函数指针 */
if (!(info = registered_fb[fbidx])) return -ENODEV;
if (info->fbops->fb_open) {
res = info->fbops->fb_open(info,1); //调用驱动的open()
if (res) module_put(info->fbops->owner);
}
return res;
}
当 用户打开一个FrameBuffer设备的时,将调用这里的fb_open()函数。传进来的inode就是欲打开设备的设备号,包括主设备和次设备号。 fb_open函数首先通过iminor()函数取得次设备号,然后查全局数组registered_fb得到设备的fb_info信息,而这里面存放了 设备的操作函数集fb_ops。这样,我们就可以调用具体驱动的fb_open() 函数,实现open的操作。下面给出了一个LCD驱动的open() 函数的调用流程图,用以说明上面的步骤。
图2.4
2.3.3 开发板S3C2410 LCD驱动的流程
(1)在mach-smdk2410.c中,定义了初始的LCD参数。注意这是个全局变量。
static struct s3c2410fb_mach_info smdk2410_lcd_cfg = {
.regs= {
.lcdcon1 = S3C2410_LCDCON1_TFT16BPP |
S3C2410_LCDCON1_TFT|
S3C2410_LCDCON1_CLKVAL(7),
......
},
.width = 240, .height = 320,
.xres = {.min = 240,.max= 240,.defval = 240},
.bpp = {.min = 16, .max= 16, .defval = 16},
......
};
(2)内核初始化时候调用s3c2410fb_probe函数。下面分析这个函数的做的工作。首先先动态分配s3c2410fb_info空间。
fbinfo = framebuffer_alloc(sizeof(struct s3c2410fb_info),&pdev->dev);
把域mach_info指向mach-smdk2410.c中的smdk2410_lcd_cfg 。
info->mach_info = pdev->dev.platform_data;
设置fb_info域的fix,var,fops字段。
fbinfo->fix.type = FB_TYPE_PACKED_PIXELS;
fbinfo->fix.type_aux = 0;
fbinfo->fix.xpanstep = 0;
fbinfo->var.nonstd = 0;
fbinfo->var.activate = FB_ACTIVATE_NOW;
fbinfo->var.height = mach_info->height;
fbinfo->var.width = mach_info->width;
fbinfo->fbops = &s3c2410fb_ops;
……
该函数调用s3c2410fb_map_video_memory()申请DMA内存,即显存。
fbi->map_size = PAGE_ALIGN(fbi->fb->fix.smem_len + PAGE_SIZE);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
fbi->map_size = fbi->fb->fix.smem_len;
…….
设置控制寄存器,设置硬件寄存器。
memcpy(&info->regs, &mach_info->regs,sizeof(info->regs));
info->regs.lcdcon1 &= ~S3C2410_LCDCON1_ENVID;
……….
调用函数s3c2410fb_init_registers(),把初始值写入寄存器。
writel(fbi->regs.lcdcon1, S3C2410_LCDCON1);
writel(fbi->regs.lcdcon2, S3C2410_LCDCON2);
(3)当用户调用mmap()映射内存的时候,Fbmem.c把刚才设置好的显存区域映射给用户。
start = info->fix.smem_start;
len = PAGE_ALIGN( (start & ~PAGE_MASK) + info->fix.smem_len);
io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,vma->vm_page_prot);
……
这样就完成了驱动初始化到用户调用的整个过程。