By starting at the top of the triangle below and moving to adjacent
numbers on the row below, the maximum total from top to bottom is 23.
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, ,
is the same challenge with a triangle containing one-hundred rows; it
cannot be solved by brute force, and requires a clever method! ;o)
--------------------
- #include <stdio.h>
-
#include <stdlib.h>
-
-
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0]))
-
const int num [] = {
-
75,
-
95, 64,
-
17, 47, 82,
-
18, 35, 87, 10,
-
20, 4, 82, 47, 65,
-
19, 1, 23, 75, 3, 34,
-
88, 2, 77, 73, 7, 63, 67,
-
99, 65, 4, 28, 6, 16, 70, 92,
-
41, 41, 26, 56, 83, 40, 80, 70, 33,
-
41, 48, 72, 33, 47, 32, 37, 16, 94, 29,
-
53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14,
-
70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57,
-
91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48,
-
63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31,
-
4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23,
-
};
-
-
enum {
-
LEFT,
-
RIGHT,
-
NONE,
-
};
-
-
int getfloor(int n)
-
{
-
int floor=0;
-
-
while(1) {
-
if (floor*(floor+1)/2 > n)
-
break;
-
floor++;
-
}
-
-
return floor-1;
-
}
-
-
int getnum(int floor)
-
{
-
return floor*(floor+1)/2;
-
}
-
-
int left(int *a, int i)
-
{
-
int floor;
-
int offset;
-
-
floor = getfloor(i);
-
offset = i - getnum(floor);
-
if (offset == 0)
-
return 0;
-
else {
-
int index = getnum(floor-1) + offset-1;
-
return a[index];
-
}
-
}
-
-
int right(int *a, int i)
-
{
-
int floor;
-
int offset;
-
-
floor = getfloor(i);
-
offset = i - getnum(floor);
-
if (offset == floor)
-
return 0;
-
else {
-
int index = getnum(floor-1) + offset;
-
return a[index];
-
}
-
}
-
-
void output(int *a, int len)
-
{
-
int i;
-
-
for (i=0; i < len; i++)
-
printf("%d ", a[i]);
-
printf("\n");
-
}
-
-
int judge(int *a, int len)
-
{
-
int max=0;
-
int floor;
-
int i;
-
-
floor = getfloor(len-1);
-
-
for (i=getnum(floor); i<len; i++) {
-
if (a[i] > max)
-
max = a[i];
-
}
-
-
return max;
-
}
-
-
int main(int argc, const char *argv[])
-
{
-
-
int i;
-
int sum[ARRAY_SIZE(num)];
-
int dir[ARRAY_SIZE(num)];
-
-
dir[0] = NONE;
-
sum[0] = num[0];
-
for (i = 1; i <= ARRAY_SIZE(num); i++) {
-
if (left(sum, i) > right(sum, i)) {
-
dir[i] = RIGHT;
-
sum[i] = num[i] + left(sum, i);
-
} else {
-
dir[i] = LEFT;
-
sum[i] = num[i] + right(sum, i);
-
}
-
}
-
-
/*
-
* output(sum, ARRAY_SIZE(sum));
-
* output(dir, ARRAY_SIZE(num));
-
*/
-
-
printf("result: %d\n", judge(sum, ARRAY_SIZE(sum)));
-
-
return 0;
-
}
典型的动态规划的思想实现... 呵呵!
阅读(1983) | 评论(1) | 转发(0) |