Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
--------------------
- #include <stdio.h>
-
-
unsigned d(int num)
-
{
-
int i, sum = 0;
-
-
for (i=1; i < num/2+1; i++) {
-
if (num%i == 0)
-
sum += i;
-
}
-
-
return sum;
-
}
-
-
#define N 10000
-
int main(int argc, const char *argv[])
-
{
-
int i, sum = 0;
-
unsigned d1, d2;
-
-
for (i=2; i<N; i++) {
-
d1 = d(i);
-
d2 = d(d1);
-
if (d2 == i && i != d1 )
-
sum += i;
-
}
-
-
printf("sum: %d\n", sum);
-
-
return 0;
-
}
-
-
效率不高,还有很大的优化空间。
阅读(1382) | 评论(0) | 转发(0) |